Pmmm

Number47
Symmetry Classorthorhombic
ChiralN

s-nets

833 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc3000 Pmmm 47 orthorhombic {3,4,3,5} 10 (4,5)
Full image sqc3029 Pmmm 47 orthorhombic {3,4,4,3} 10 (4,6)
Full image sqc3065 Pmmm 47 orthorhombic {5,7} 6 (2,6)
Full image sqc3066 Pmmm 47 orthorhombic {7,5} 6 (2,6)
Full image sqc3067 Pmmm 47 orthorhombic {7,6} 6 (2,6)
Full image sqc3074 Pmmm 47 orthorhombic {5,4,3,3} 10 (4,6)
Full image sqc3075 Pmmm 47 orthorhombic {3,7,3,3} 10 (4,6)
Full image sqc3077 Pmmm 47 orthorhombic {4,4,4,3} 10 (4,5)
Full image sqc3078 Pmmm 47 orthorhombic {4,4,3} 10 (3,6)
Full image sqc3082 Pmmm 47 orthorhombic {6,3,4,3} 10 (4,6)
Full image sqc3084 Pmmm 47 orthorhombic {7,3,3,3} 10 (4,6)
Full image sqc3086 Pmmm 47 orthorhombic {4,4,3} 10 (3,6)
Full image sqc3235 Pmmm 47 orthorhombic {6,4} 8 (2,6)
Full image sqc3410 Pmmm 47 orthorhombic {4,6} 8 (2,7)
Full image sqc3423 Pmmm 47 orthorhombic {4,4,4,4,4,4,4,4} 10 (8,9)
Full image sqc3532 Pmmm 47 orthorhombic {3,4,6,3} 10 (4,6)
Full image sqc3541 Pmmm 47 orthorhombic {3,4,4,5} 10 (4,6)
Full image sqc3550 Pmmm 47 orthorhombic {3,8,3,3} 10 (4,6)
Full image sqc3706 Pmmm 47 orthorhombic {3,4,3,3} 12 (4,6)
Full image sqc3709 Pmmm 47 orthorhombic {3,4,3,3} 12 (4,6)
Full image sqc3788 Pmmm 47 orthorhombic {4,6,3,3} 10 (4,6)
Full image sqc3796 Pmmm 47 orthorhombic {5,4,4,3} 10 (4,6)
Full image sqc3822 Pmmm 47 orthorhombic {4,3,3,3} 12 (4,6)
Full image sqc3839 Pmmm 47 orthorhombic {3,4,3,3} 12 (4,6)
Full image sqc3849 Pmmm 47 orthorhombic {3,3,4,4,3} 12 (5,7)
Full image sqc3850 Pmmm 47 orthorhombic {3,4,3,3} 12 (4,6)
Full image sqc3874 Pmmm 47 orthorhombic {4,3,3,3} 12 (4,6)
Full image sqc3940 Pmmm 47 orthorhombic {7,6,4,4} 8 (4,5)
Full image sqc3954 Pmmm 47 orthorhombic {3,4,4,3} 12 (4,6)
Full image sqc3992 Pmmm 47 orthorhombic {4,3,4,3} 12 (4,6)
Full image sqc3994 Pmmm 47 orthorhombic {3,4,4,3} 12 (4,6)
Full image sqc4082 Pmmm 47 orthorhombic {4,7} 8 (2,7)
Full image sqc4091 Pmmm 47 orthorhombic {7,4} 8 (2,7)
Full image sqc4092 Pmmm 47 orthorhombic {7,4} 8 (2,7)
Full image sqc4140 Pmmm 47 orthorhombic {6,5} 8 (2,7)
Full image sqc4362 Pmmm 47 orthorhombic {3,6,3,4,3} 12 (5,6)
Full image sqc4382 Pmmm 47 orthorhombic {3,8,7,4} 8 (4,6)
Full image sqc4480 Pmmm 47 orthorhombic {3,4,4,4,3} 12 (5,6)
Full image sqc4601 Pmmm 47 orthorhombic {3,4,7,4} 10 (4,6)
Full image sqc4680 Pmmm 47 orthorhombic {3,3,3,4,3} 14 (5,6)
Full image sqc4681 Pmmm 47 orthorhombic {3,4,3,3,3} 14 (5,6)
Full image sqc4721 Pmmm 47 orthorhombic {7,4} 10 (2,6)
Full image sqc4726 Pmmm 47 orthorhombic {4,7,4,4} 10 (4,6)
Full image sqc4732 Pmmm 47 orthorhombic {4,4,4,3} 12 (4,7)
Full image sqc4734 Pmmm 47 orthorhombic {3,4,3,3,3} 14 (5,7)
Full image sqc4815 Pmmm 47 orthorhombic {8,4} 10 (2,7)
Full image sqc5303 Pmmm 47 orthorhombic {3,4,4,3,3} 14 (5,7)
Full image sqc5304 Pmmm 47 orthorhombic {3,4,4,3,3} 14 (5,7)
Full image sqc5514 Pmmm 47 orthorhombic {3,4,3,4,3} 14 (5,7)
Full image sqc5539 Pmmm 47 orthorhombic {3,4,3,4,3} 14 (5,7)
Full image sqc5540 Pmmm 47 orthorhombic {3,3,4,4,3} 14 (5,7)
Full image sqc5541 Pmmm 47 orthorhombic {4,3,3,4,3} 14 (5,7)
Full image sqc5612 Pmmm 47 orthorhombic {3,8,6,4,4} 10 (5,6)
Full image sqc5613 Pmmm 47 orthorhombic {7,6,4,4,4} 10 (5,6)
Full image sqc5614 Pmmm 47 orthorhombic {3,4,6,4,4} 12 (5,6)
Full image sqc5615 Pmmm 47 orthorhombic {7,3,4,4,4} 12 (5,6)
Full image sqc5616 Pmmm 47 orthorhombic {5,5} 10 (2,6)
Full image sqc5797 Pmmm 47 orthorhombic {4,6,4,4,4} 12 (5,6)
Full image sqc5812 Pmmm 47 orthorhombic {3,4,7,4,4} 12 (5,7)
Full image sqc5940 Pmmm 47 orthorhombic {5,4} 12 (2,7)
Full image sqc5992 Pmmm 47 orthorhombic {3,4,8,4,3} 12 (5,7)
Full image sqc5995 Pmmm 47 orthorhombic {3,4,4,7,4} 12 (5,7)
Full image sqc6141 Pmmm 47 orthorhombic {7,5} 10 (2,7)
Full image sqc6167 Pmmm 47 orthorhombic {3,8,4,4,4} 12 (5,7)
Full image sqc6170 Pmmm 47 orthorhombic {4,7,4,4,4} 12 (5,7)
Full image sqc6217 Pmmm 47 orthorhombic {3,4,4,4,4} 14 (5,7)
Full image sqc6702 Pmmm 47 orthorhombic {4,5} 12 (2,7)
Full image sqc6801 Pmmm 47 orthorhombic {3,6,4,4,4,4} 14 (6,6)
Full image sqc6981 Pmmm 47 orthorhombic {5,6} 10 (2,7)
Full image sqc6982 Pmmm 47 orthorhombic {3,4,4,6,4,4} 14 (6,7)
Full image sqc6983 Pmmm 47 orthorhombic {3,4,6,4,4,4} 14 (6,7)
Full image sqc6984 Pmmm 47 orthorhombic {3,8,3,4,4,4} 14 (6,7)
Full image sqc6985 Pmmm 47 orthorhombic {3,4,3,4,4,4} 16 (6,7)
Full image sqc6986 Pmmm 47 orthorhombic {7,3,4,4,4,4} 14 (6,7)
Full image sqc7019 Pmmm 47 orthorhombic {7,4} 12 (2,8)
Full image sqc7277 Pmmm 47 orthorhombic {4,6,4,4,4,4} 14 (6,7)
Full image sqc7349 Pmmm 47 orthorhombic {3,4,4,4,4,3} 16 (6,8)
Full image sqc7379 Pmmm 47 orthorhombic {4,3,4,4,4,4} 16 (6,7)
Full image sqc7395 Pmmm 47 orthorhombic {3,4,4,4,4,4} 16 (6,8)
Full image sqc7396 Pmmm 47 orthorhombic {3,4,4,4,4,4} 16 (6,8)
Full image sqc7576 Pmmm 47 orthorhombic {4,6} 12 (2,8)
Full image sqc8215 Pmmm 47 orthorhombic {3,4,4,3,4,4,4} 18 (7,8)
Full image sqc8258 Pmmm 47 orthorhombic {3,4,3,4,4,4,4} 18 (7,8)
Full image sqc8365 Pmmm 47 orthorhombic {4,3,4,4,4,4,4} 18 (7,8)
Full image sqc8771 Pmmm 47 orthorhombic {4,4,4,8,4,4,4} 16 (7,8)
Full image sqc8963 Pmmm 47 orthorhombic {4,4,8,4,4,4,4} 16 (7,8)
Full image sqc14533 Pmmm 47 orthorhombic {8,3} 3 (2,4)
Full image sqc14534 Pmmm 47 orthorhombic {6,4,3} 4 (3,4)
Full image sqc14535 Pmmm 47 orthorhombic {6,3} 4 (2,5)
Full image sqc14537 Pmmm 47 orthorhombic {8,3,4} 4 (3,5)
Full image sqc14538 Pmmm 47 orthorhombic {4,4,3} 5 (3,5)
Full image sqc14539 Pmmm 47 orthorhombic {12,3} 3 (2,5)
Full image sqc14540 Pmmm 47 orthorhombic {4,6,3,4} 5 (4,5)
Full image sqc14541 Pmmm 47 orthorhombic {4,4,3,3} 6 (4,5)
Full image sqc14643 Pmmm 47 orthorhombic {5,5} 4 (2,5)
Full image sqc14542 Pmmm 47 orthorhombic {8,5} 3 (2,5)
Full image sqc14543 Pmmm 47 orthorhombic {3,8} 4 (2,6)
Full image sqc14545 Pmmm 47 orthorhombic {8,3} 4 (2,6)
Full image sqc14546 Pmmm 47 orthorhombic {5,6} 4 (2,6)
Full image sqc14547 Pmmm 47 orthorhombic {3,4,4,4} 6 (4,6)