Pmmm

Number47
Symmetry Classorthorhombic
ChiralN

s-nets

833 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc1475 Pmmm 47 orthorhombic {3,4,4,4,4,8} 7 (6,7)
Full image sqc1476 Pmmm 47 orthorhombic {4,3,4,4,8,4} 7 (6,7)
Full image sqc1477 Pmmm 47 orthorhombic {3,4,4,4,8,4} 7 (6,7)
Full image sqc1479 Pmmm 47 orthorhombic {7,4} 6 (2,7)
Full image sqc1482 Pmmm 47 orthorhombic {4,7} 6 (2,7)
Full image sqc1483 Pmmm 47 orthorhombic {4,7} 6 (2,7)
Full image sqc1484 Pmmm 47 orthorhombic {4,7} 6 (2,7)
Full image sqc1486 Pmmm 47 orthorhombic {6,3} 6 (2,6)
Full image sqc1489 Pmmm 47 orthorhombic {3,6} 6 (2,6)
Full image sqc1490 Pmmm 47 orthorhombic {4,6,4,4,4,4} 7 (6,7)
Full image sqc1491 Pmmm 47 orthorhombic {4,4,4,4,6,4} 7 (6,7)
Full image sqc1492 Pmmm 47 orthorhombic {4,4,4,6,4,4} 7 (6,7)
Full image sqc1493 Pmmm 47 orthorhombic {4,6,4,4,4,4} 7 (6,7)
Full image sqc1494 Pmmm 47 orthorhombic {4,6,4,4,4,4} 7 (6,7)
Full image sqc1495 Pmmm 47 orthorhombic {3,4,4,4,4,4} 8 (6,7)
Full image sqc1496 Pmmm 47 orthorhombic {3,4,4,4,4,4} 8 (6,7)
Full image sqc1499 Pmmm 47 orthorhombic {4,7} 6 (2,5)
Full image sqc1500 Pmmm 47 orthorhombic {7,4} 6 (2,5)
Full image sqc1501 Pmmm 47 orthorhombic {4,7} 6 (2,5)
Full image sqc1511 Pmmm 47 orthorhombic {5,5} 6 (2,6)
Full image sqc1513 Pmmm 47 orthorhombic {5,5} 6 (2,7)
Full image sqc1517 Pmmm 47 orthorhombic {3,4,4,4,8,4} 7 (6,7)
Full image sqc1518 Pmmm 47 orthorhombic {4,8,4,3,4,4} 7 (6,7)
Full image sqc1520 Pmmm 47 orthorhombic {3,7,5} 6 (3,5)
Full image sqc1524 Pmmm 47 orthorhombic {4,4,6,4,4,4} 7 (6,7)
Full image sqc1529 Pmmm 47 orthorhombic {6,6,3} 6 (3,5)
Full image sqc1530 Pmmm 47 orthorhombic {4,6,4,4,4,4} 7 (6,7)
Full image sqc1531 Pmmm 47 orthorhombic {4,4,6,4,4,4} 7 (6,7)
Full image sqc1532 Pmmm 47 orthorhombic {4,4,4,4,4,6} 7 (6,7)
Full image sqc1533 Pmmm 47 orthorhombic {4,4,4,4,4,6} 7 (6,7)
Full image sqc1534 Pmmm 47 orthorhombic {6,3,3} 8 (3,5)
Full image sqc1540 Pmmm 47 orthorhombic {5,5} 6 (2,5)
Full image sqc1541 Pmmm 47 orthorhombic {5,7,3} 6 (3,5)
Full image sqc1542 Pmmm 47 orthorhombic {5,5} 6 (2,5)
Full image sqc1544 Pmmm 47 orthorhombic {4,4,3} 8 (3,4)
Full image sqc1545 Pmmm 47 orthorhombic {3,4,4,8,4,4} 7 (6,7)
Full image sqc1547 Pmmm 47 orthorhombic {4,4,3,4,4,4} 8 (6,7)
Full image sqc1550 Pmmm 47 orthorhombic {5,5} 6 (2,5)
Full image sqc1553 Pmmm 47 orthorhombic {6,3,3} 8 (3,5)
Full image sqc1608 Pmmm 47 orthorhombic {3,10} 6 (2,8)
Full image sqc1609 Pmmm 47 orthorhombic {3,10} 6 (2,8)
Full image sqc1610 Pmmm 47 orthorhombic {3,10} 6 (2,8)
Full image sqc1673 Pmmm 47 orthorhombic {4,8} 6 (2,8)
Full image sqc1680 Pmmm 47 orthorhombic {8,4} 6 (2,6)
Full image sqc1689 Pmmm 47 orthorhombic {4,8} 6 (2,6)
Full image sqc1695 Pmmm 47 orthorhombic {8,4} 6 (2,6)
Full image sqc1702 Pmmm 47 orthorhombic {4,4,4,4,4,4} 8 (6,8)
Full image sqc1703 Pmmm 47 orthorhombic {4,4,4,4,4,4} 8 (6,8)
Full image sqc1704 Pmmm 47 orthorhombic {4,4,4,4,4,4} 8 (6,8)
Full image sqc1705 Pmmm 47 orthorhombic {4,4,4,4,4,4} 8 (6,8)
Full image sqc1706 Pmmm 47 orthorhombic {4,4,4,4,4,4} 8 (6,8)
Full image sqc1707 Pmmm 47 orthorhombic {4,4,4,4,4,4} 8 (6,8)
Full image sqc1708 Pmmm 47 orthorhombic {4,4,4,4,4,4} 8 (6,8)
Full image sqc1709 Pmmm 47 orthorhombic {4,4,4,4,4,4} 8 (6,8)
Full image sqc1710 Pmmm 47 orthorhombic {4,4,4,4,4,4} 8 (6,8)
Full image sqc1733 Pmmm 47 orthorhombic {3,6,4,3} 8 (4,6)
Full image sqc1848 Pmmm 47 orthorhombic {4,4,4,8,8,4} 6 (6,7)
Full image sqc1896 Pmmm 47 orthorhombic {3,3,4,4,4,4,4} 9 (7,7)
Full image sqc1985 Pmmm 47 orthorhombic {3,4,5} 8 (3,5)
Full image sqc1986 Pmmm 47 orthorhombic {3,4,5} 8 (3,5)
Full image sqc1987 Pmmm 47 orthorhombic {5,4,3} 8 (3,5)
Full image sqc1995 Pmmm 47 orthorhombic {3,7,3} 8 (3,5)
Full image sqc2002 Pmmm 47 orthorhombic {3,7,3} 8 (3,5)
Full image sqc2158 Pmmm 47 orthorhombic {5,4,3} 8 (3,5)
Full image sqc2194 Pmmm 47 orthorhombic {3,3,4,3} 10 (4,6)
Full image sqc2213 Pmmm 47 orthorhombic {4,9} 6 (2,8)
Full image sqc2214 Pmmm 47 orthorhombic {4,9} 6 (2,8)
Full image sqc2221 Pmmm 47 orthorhombic {7,3} 6 (2,7)
Full image sqc2223 Pmmm 47 orthorhombic {5,7} 6 (2,8)
Full image sqc2228 Pmmm 47 orthorhombic {4,4,3,4,4,4,4} 9 (7,8)
Full image sqc2229 Pmmm 47 orthorhombic {4,4,4,3,4,4,4} 9 (7,8)
Full image sqc2232 Pmmm 47 orthorhombic {5,6} 6 (2,5)
Full image sqc2233 Pmmm 47 orthorhombic {7,5} 6 (2,6)
Full image sqc2239 Pmmm 47 orthorhombic {5,7} 6 (2,6)
Full image sqc2258 Pmmm 47 orthorhombic {4,4,4,4,4,3,4} 9 (7,8)
Full image sqc2259 Pmmm 47 orthorhombic {4,4,4,4,3,4,4} 9 (7,8)
Full image sqc2260 Pmmm 47 orthorhombic {3,4,4,4,4,4,4} 9 (7,8)
Full image sqc2261 Pmmm 47 orthorhombic {3,4,4,4,4,4,4} 9 (7,8)
Full image sqc2264 Pmmm 47 orthorhombic {6,4,3} 8 (3,6)
Full image sqc2266 Pmmm 47 orthorhombic {4,6,3} 8 (3,5)
Full image sqc2267 Pmmm 47 orthorhombic {5,6} 6 (2,6)
Full image sqc2269 Pmmm 47 orthorhombic {3,4,3} 10 (3,5)
Full image sqc2270 Pmmm 47 orthorhombic {3,4,4,4,4,4,4} 9 (7,8)
Full image sqc2284 Pmmm 47 orthorhombic {4,3,3} 10 (3,5)
Full image sqc2285 Pmmm 47 orthorhombic {3,4,4,3} 10 (4,6)
Full image sqc2286 Pmmm 47 orthorhombic {3,4,3} 10 (3,5)
Full image sqc2403 Pmmm 47 orthorhombic {3,6} 8 (2,7)
Full image sqc2602 Pmmm 47 orthorhombic {4,4,4,4,8,4,4} 8 (7,8)
Full image sqc2731 Pmmm 47 orthorhombic {4,4,4,8,4,4,4} 8 (7,8)
Full image sqc2732 Pmmm 47 orthorhombic {4,8,4,4,4,4,4} 8 (7,8)
Full image sqc2733 Pmmm 47 orthorhombic {4,4,8,4,4,4,4} 8 (7,8)
Full image sqc2748 Pmmm 47 orthorhombic {3,6,3,3} 10 (4,5)
Full image sqc2751 Pmmm 47 orthorhombic {5,3,4,3} 10 (4,5)
Full image sqc2803 Pmmm 47 orthorhombic {4,4,4,4,4,8,4} 8 (7,8)
Full image sqc2836 Pmmm 47 orthorhombic {4,7,3} 8 (3,6)
Full image sqc2841 Pmmm 47 orthorhombic {5,4} 8 (2,6)
Full image sqc2843 Pmmm 47 orthorhombic {3,4,4,3} 10 (4,5)
Full image sqc2920 Pmmm 47 orthorhombic {4,5} 8 (2,6)
Full image sqc2926 Pmmm 47 orthorhombic {5,4} 8 (2,6)
Full image sqc2994 Pmmm 47 orthorhombic {3,3,6,3} 10 (4,5)