Cmma

Number67
Symmetry Classorthorhombic
ChiralN

s-nets

872 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc4650 Cmma 67 orthorhombic {4,4,4,6} 10 (4,6)
Full image sqc4651 Cmma 67 orthorhombic {3,4,4,4} 12 (4,6)
Full image sqc4653 Cmma 67 orthorhombic {4,4,4,3} 12 (4,6)
Full image sqc4656 Cmma 67 orthorhombic {4,4,3,4} 12 (4,6)
Full image sqc4663 Cmma 67 orthorhombic {3,4} 12 (2,5)
Full image sqc4667 Cmma 67 orthorhombic {6,4} 10 (2,5)
Full image sqc4668 Cmma 67 orthorhombic {4,4,3,4} 12 (4,6)
Full image sqc4669 Cmma 67 orthorhombic {4,3,4,4} 12 (4,6)
Full image sqc4672 Cmma 67 orthorhombic {4,4,4,3} 12 (4,6)
Full image sqc4673 Cmma 67 orthorhombic {3,4,4,4} 12 (4,6)
Full image sqc4677 Cmma 67 orthorhombic {3,4,4,4} 12 (4,6)
Full image sqc4686 Cmma 67 orthorhombic {4,4,3,4} 12 (4,6)
Full image sqc4691 Cmma 67 orthorhombic {3,4,4,4} 12 (4,6)
Full image sqc4696 Cmma 67 orthorhombic {3,4,4,4} 12 (4,6)
Full image sqc4699 Cmma 67 orthorhombic {6,4} 10 (2,5)
Full image sqc4702 Cmma 67 orthorhombic {4,3} 12 (2,5)
Full image sqc4706 Cmma 67 orthorhombic {4,3} 12 (2,5)
Full image sqc4707 Cmma 67 orthorhombic {4,3} 12 (2,5)
Full image sqc4712 Cmma 67 orthorhombic {4,3} 12 (2,5)
Full image sqc4715 Cmma 67 orthorhombic {4,3,4,4} 12 (4,6)
Full image sqc4784 Cmma 67 orthorhombic {12,3} 10 (2,6)
Full image sqc4785 Cmma 67 orthorhombic {10,4} 6 (2,6)
Full image sqc4806 Cmma 67 orthorhombic {8,8,4,4} 8 (4,6)
Full image sqc4835 Cmma 67 orthorhombic {8,4} 8 (2,7)
Full image sqc4841 Cmma 67 orthorhombic {4,8} 10 (2,6)
Full image sqc4845 Cmma 67 orthorhombic {8,4} 10 (2,6)
Full image sqc4847 Cmma 67 orthorhombic {8,4} 8 (2,7)
Full image sqc4848 Cmma 67 orthorhombic {10,7} 6 (2,6)
Full image sqc4849 Cmma 67 orthorhombic {5,7} 8 (2,6)
Full image sqc4852 Cmma 67 orthorhombic {4,4,8,4} 10 (4,6)
Full image sqc4861 Cmma 67 orthorhombic {4,8,4,4} 10 (4,6)
Full image sqc4872 Cmma 67 orthorhombic {6,6} 8 (2,7)
Full image sqc4876 Cmma 67 orthorhombic {6,3} 12 (2,6)
Full image sqc4893 Cmma 67 orthorhombic {4,4,4,3,3} 14 (5,6)
Full image sqc4898 Cmma 67 orthorhombic {4,4,4,4} 12 (4,7)
Full image sqc4899 Cmma 67 orthorhombic {4,3,3,4,4} 14 (5,6)
Full image sqc4910 Cmma 67 orthorhombic {12,3} 10 (2,6)
Full image sqc4913 Cmma 67 orthorhombic {3,12} 10 (2,6)
Full image sqc5022 Cmma 67 orthorhombic {9,3} 8 (2,7)
Full image sqc5023 Cmma 67 orthorhombic {8,4} 8 (2,7)
Full image sqc5025 Cmma 67 orthorhombic {8,4} 10 (2,6)
Full image sqc5028 Cmma 67 orthorhombic {4,8} 10 (2,6)
Full image sqc5045 Cmma 67 orthorhombic {6,3} 12 (2,6)
Full image sqc5048 Cmma 67 orthorhombic {6,3} 12 (2,6)
Full image sqc5063 Cmma 67 orthorhombic {4,4,4,4,4} 12 (5,6)
Full image sqc5074 Cmma 67 orthorhombic {3,6} 12 (2,6)
Full image sqc5082 Cmma 67 orthorhombic {3,9} 8 (2,7)
Full image sqc5083 Cmma 67 orthorhombic {9,3} 8 (2,7)
Full image sqc5084 Cmma 67 orthorhombic {3,9} 8 (2,7)
Full image sqc5086 Cmma 67 orthorhombic {5,7} 8 (2,6)
Full image sqc5094 Cmma 67 orthorhombic {5,7} 8 (2,7)
Full image sqc5102 Cmma 67 orthorhombic {6,3} 12 (2,6)
Full image sqc5114 Cmma 67 orthorhombic {4,8,4,4} 10 (4,6)
Full image sqc5130 Cmma 67 orthorhombic {7,5} 8 (2,6)
Full image sqc5152 Cmma 67 orthorhombic {7,5} 8 (2,7)
Full image sqc5155 Cmma 67 orthorhombic {4,3,4,4,6} 12 (5,5)
Full image sqc5161 Cmma 67 orthorhombic {6,3} 12 (2,6)
Full image sqc5163 Cmma 67 orthorhombic {6,6} 8 (2,7)
Full image sqc5171 Cmma 67 orthorhombic {6,6} 8 (2,7)
Full image sqc5203 Cmma 67 orthorhombic {4,5} 10 (2,5)
Full image sqc5208 Cmma 67 orthorhombic {4,3,3,4,4} 14 (5,6)
Full image sqc5266 Cmma 67 orthorhombic {8,4} 10 (2,6)
Full image sqc5271 Cmma 67 orthorhombic {4,4,4,4} 12 (4,7)
Full image sqc5297 Cmma 67 orthorhombic {4,4,8,4} 10 (4,6)
Full image sqc5311 Cmma 67 orthorhombic {4,4,8,4} 10 (4,6)
Full image sqc5312 Cmma 67 orthorhombic {4,8,4,4} 10 (4,6)
Full image sqc5314 Cmma 67 orthorhombic {3,6} 12 (2,6)
Full image sqc5315 Cmma 67 orthorhombic {3,6} 12 (2,6)
Full image sqc5316 Cmma 67 orthorhombic {4,4,4,4} 12 (4,6)
Full image sqc5329 Cmma 67 orthorhombic {3,6} 12 (2,6)
Full image sqc5336 Cmma 67 orthorhombic {4,6,3,4,4} 12 (5,6)
Full image sqc5340 Cmma 67 orthorhombic {6,3,4,4,4} 12 (5,5)
Full image sqc5348 Cmma 67 orthorhombic {4,8,4,4} 10 (4,6)
Full image sqc5357 Cmma 67 orthorhombic {4,8,4,4} 10 (4,6)
Full image sqc5378 Cmma 67 orthorhombic {4,6,3,4,4} 12 (5,6)
Full image sqc5380 Cmma 67 orthorhombic {3,4,4,4,6} 12 (5,5)
Full image sqc5382 Cmma 67 orthorhombic {4,4,8,4} 10 (4,6)
Full image sqc5389 Cmma 67 orthorhombic {4,8,4,4} 10 (4,6)
Full image sqc5392 Cmma 67 orthorhombic {4,4,4,8} 10 (4,6)
Full image sqc5406 Cmma 67 orthorhombic {4,8,4,4} 10 (4,6)
Full image sqc5408 Cmma 67 orthorhombic {4,4,4,8} 10 (4,6)
Full image sqc5434 Cmma 67 orthorhombic {3,4,4,4,6} 12 (5,5)
Full image sqc5436 Cmma 67 orthorhombic {4,3,4,6,4} 12 (5,5)
Full image sqc5445 Cmma 67 orthorhombic {5,4} 10 (2,5)
Full image sqc5458 Cmma 67 orthorhombic {5,4} 10 (2,5)
Full image sqc5460 Cmma 67 orthorhombic {5,4} 10 (2,5)
Full image sqc5463 Cmma 67 orthorhombic {5,4} 10 (2,5)
Full image sqc5465 Cmma 67 orthorhombic {5,4} 10 (2,5)
Full image sqc5495 Cmma 67 orthorhombic {4,4,4,4} 12 (4,6)
Full image sqc5506 Cmma 67 orthorhombic {4,4,3,3,4} 14 (5,6)
Full image sqc5511 Cmma 67 orthorhombic {4,4} 12 (2,6)
Full image sqc5517 Cmma 67 orthorhombic {4,4,4,4} 12 (4,7)
Full image sqc5519 Cmma 67 orthorhombic {4,4,4,4} 12 (4,6)
Full image sqc5534 Cmma 67 orthorhombic {4,4} 12 (2,6)
Full image sqc5538 Cmma 67 orthorhombic {4,4,4,4} 12 (4,7)
Full image sqc5552 Cmma 67 orthorhombic {4,4} 12 (2,6)
Full image sqc5563 Cmma 67 orthorhombic {4,4,4,4,4} 12 (5,6)
Full image sqc5566 Cmma 67 orthorhombic {4,4} 12 (2,6)
Full image sqc5573 Cmma 67 orthorhombic {4,4} 12 (2,6)
Full image sqc5581 Cmma 67 orthorhombic {4,4} 12 (2,6)