Cmma

Number67
Symmetry Classorthorhombic
ChiralN

s-nets

872 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc7370 Cmma 67 orthorhombic {3,4,4,4,4,4} 16 (6,7)
Full image sqc7371 Cmma 67 orthorhombic {4,4,4,4,3,4} 16 (6,7)
Full image sqc7372 Cmma 67 orthorhombic {4,3,4,4,4,4} 16 (6,7)
Full image sqc7374 Cmma 67 orthorhombic {4,3,4,4,4,4} 16 (6,7)
Full image sqc7382 Cmma 67 orthorhombic {4,4,4,4,3,4} 16 (6,7)
Full image sqc7383 Cmma 67 orthorhombic {3,4,4,4,4,4} 16 (6,7)
Full image sqc7420 Cmma 67 orthorhombic {10,3} 12 (2,8)
Full image sqc7437 Cmma 67 orthorhombic {8,4} 12 (2,8)
Full image sqc7439 Cmma 67 orthorhombic {8,4} 12 (2,8)
Full image sqc7447 Cmma 67 orthorhombic {6,5} 12 (2,8)
Full image sqc7458 Cmma 67 orthorhombic {4,4,4,4,4,4} 16 (6,8)
Full image sqc7553 Cmma 67 orthorhombic {8,4} 12 (2,8)
Full image sqc7592 Cmma 67 orthorhombic {6,5} 12 (2,8)
Full image sqc7609 Cmma 67 orthorhombic {4,7} 10 (2,7)
Full image sqc7627 Cmma 67 orthorhombic {4,4,4,4,4,8} 14 (6,7)
Full image sqc7648 Cmma 67 orthorhombic {6,5} 12 (2,8)
Full image sqc7658 Cmma 67 orthorhombic {4,6} 12 (2,8)
Full image sqc7687 Cmma 67 orthorhombic {3,5} 16 (2,7)
Full image sqc7851 Cmma 67 orthorhombic {4,4,4,4,4,4} 16 (6,8)
Full image sqc7891 Cmma 67 orthorhombic {6,5} 12 (2,8)
Full image sqc7904 Cmma 67 orthorhombic {4,4,4,4,4,8} 14 (6,7)
Full image sqc7909 Cmma 67 orthorhombic {4,4,4,4,4,8} 14 (6,7)
Full image sqc7913 Cmma 67 orthorhombic {4,4,4,4,4,8} 14 (6,7)
Full image sqc7915 Cmma 67 orthorhombic {4,4,4,4,4,8} 14 (6,7)
Full image sqc7917 Cmma 67 orthorhombic {4,4,4,4,4,8} 14 (6,7)
Full image sqc7932 Cmma 67 orthorhombic {4,4,8,4,4,4} 14 (6,7)
Full image sqc7998 Cmma 67 orthorhombic {5,3} 16 (2,7)
Full image sqc8002 Cmma 67 orthorhombic {3,5} 16 (2,7)
Full image sqc8012 Cmma 67 orthorhombic {3,5} 16 (2,7)
Full image sqc8014 Cmma 67 orthorhombic {5,3} 16 (2,7)
Full image sqc8023 Cmma 67 orthorhombic {3,5} 16 (2,7)
Full image sqc8064 Cmma 67 orthorhombic {4,4} 16 (2,7)
Full image sqc8069 Cmma 67 orthorhombic {4,4,4,4,4,4} 16 (6,8)
Full image sqc8071 Cmma 67 orthorhombic {4,4,4,4,4,4} 16 (6,8)
Full image sqc8075 Cmma 67 orthorhombic {4,4,4,4,4,4} 16 (6,8)
Full image sqc8097 Cmma 67 orthorhombic {4,4,4,4,4,4} 16 (6,8)
Full image sqc8114 Cmma 67 orthorhombic {4,4} 16 (2,7)
Full image sqc8136 Cmma 67 orthorhombic {4,4,4,4,4,4} 16 (6,8)
Full image sqc8271 Cmma 67 orthorhombic {7,5} 12 (2,8)
Full image sqc8276 Cmma 67 orthorhombic {5,6} 12 (2,8)
Full image sqc8283 Cmma 67 orthorhombic {4,4,4,3,4,4,4} 18 (7,8)
Full image sqc8290 Cmma 67 orthorhombic {3,7} 12 (2,8)
Full image sqc8291 Cmma 67 orthorhombic {3,7} 12 (2,8)
Full image sqc8298 Cmma 67 orthorhombic {3,7} 12 (2,8)
Full image sqc8301 Cmma 67 orthorhombic {5,6} 12 (2,8)
Full image sqc8303 Cmma 67 orthorhombic {5,6} 12 (2,8)
Full image sqc8330 Cmma 67 orthorhombic {4,4,3,4,4,4,4} 18 (7,8)
Full image sqc8382 Cmma 67 orthorhombic {4,4,3,4,4,4,4} 18 (7,8)
Full image sqc8385 Cmma 67 orthorhombic {4,4,4,3,4,4,4} 18 (7,8)
Full image sqc8627 Cmma 67 orthorhombic {3,6} 16 (2,8)
Full image sqc8705 Cmma 67 orthorhombic {3,6} 16 (2,8)
Full image sqc8713 Cmma 67 orthorhombic {3,6} 16 (2,8)
Full image sqc8736 Cmma 67 orthorhombic {4,5} 16 (2,8)
Full image sqc8743 Cmma 67 orthorhombic {4,5} 16 (2,8)
Full image sqc8935 Cmma 67 orthorhombic {4,4,4,8,4,4,4} 16 (7,8)
Full image sqc8939 Cmma 67 orthorhombic {4,4,4,8,4,4,4} 16 (7,8)
Full image sqc9021 Cmma 67 orthorhombic {3,6} 16 (2,8)
Full image sqc9022 Cmma 67 orthorhombic {6,3} 16 (2,8)
Full image sqc9088 Cmma 67 orthorhombic {5,4} 16 (2,8)
Full image sqc9094 Cmma 67 orthorhombic {4,5} 16 (2,8)
Full image sqc9110 Cmma 67 orthorhombic {4,5} 16 (2,8)
Full image sqc9178 Cmma 67 orthorhombic {4,4,4,4,4,4,4} 18 (7,8)
Full image sqc9179 Cmma 67 orthorhombic {4,4,4,4,4,4,4} 18 (7,8)
Full image sqc9204 Cmma 67 orthorhombic {4,4,4,4,4,4,4} 18 (7,8)
Full image sqc9206 Cmma 67 orthorhombic {4,4,4,4,4,4,4} 18 (7,8)
Full image sqc9481 Cmma 67 orthorhombic {3,7} 16 (2,9)
Full image sqc9535 Cmma 67 orthorhombic {4,6} 16 (2,9)
Full image sqc9898 Cmma 67 orthorhombic {4,4,4,4,4,4,4,4} 20 (8,9)
Full image sqc14614 Cmma 67 orthorhombic {3,6,4} 8 (3,4)
Full image sqc14617 Cmma 67 orthorhombic {4,8,3} 8 (3,5)
Full image sqc14620 Cmma 67 orthorhombic {3,3,4,4} 12 (4,5)
Full image sqc14623 Cmma 67 orthorhombic {3,4,4,4} 12 (4,6)