Cmma

Number67
Symmetry Classorthorhombic
ChiralN

s-nets

872 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc4135 Cmma 67 orthorhombic {4,8,3,4} 10 (4,6)
Full image sqc4141 Cmma 67 orthorhombic {5,6} 8 (2,6)
Full image sqc4142 Cmma 67 orthorhombic {6,5} 8 (2,6)
Full image sqc4150 Cmma 67 orthorhombic {4,4,4,6} 10 (4,6)
Full image sqc4151 Cmma 67 orthorhombic {6,4} 10 (2,5)
Full image sqc4158 Cmma 67 orthorhombic {6,4,4,4} 10 (4,6)
Full image sqc4159 Cmma 67 orthorhombic {5,12} 6 (2,6)
Full image sqc4164 Cmma 67 orthorhombic {6,5} 8 (2,6)
Full image sqc4166 Cmma 67 orthorhombic {5,6} 8 (2,6)
Full image sqc4178 Cmma 67 orthorhombic {3,4,4,4} 12 (4,6)
Full image sqc4180 Cmma 67 orthorhombic {3,4,4,4} 12 (4,6)
Full image sqc4181 Cmma 67 orthorhombic {6,4,4,4} 10 (4,6)
Full image sqc4187 Cmma 67 orthorhombic {4,4,3,4} 12 (4,6)
Full image sqc4191 Cmma 67 orthorhombic {4,3,4,4} 12 (4,6)
Full image sqc4192 Cmma 67 orthorhombic {4,4,4,3} 12 (4,6)
Full image sqc4193 Cmma 67 orthorhombic {3,4,4,4} 12 (4,6)
Full image sqc4194 Cmma 67 orthorhombic {3,4,4,4} 12 (4,6)
Full image sqc4200 Cmma 67 orthorhombic {3,10} 10 (2,5)
Full image sqc4256 Cmma 67 orthorhombic {4,4,6,8} 8 (4,5)
Full image sqc4257 Cmma 67 orthorhombic {4,4,8,6} 8 (4,5)
Full image sqc4258 Cmma 67 orthorhombic {3,10} 10 (2,5)
Full image sqc4259 Cmma 67 orthorhombic {9,4} 6 (2,6)
Full image sqc4262 Cmma 67 orthorhombic {6,8} 6 (2,6)
Full image sqc4263 Cmma 67 orthorhombic {3,8} 8 (2,6)
Full image sqc4264 Cmma 67 orthorhombic {3,8} 8 (2,6)
Full image sqc4265 Cmma 67 orthorhombic {4,7} 8 (2,7)
Full image sqc4276 Cmma 67 orthorhombic {6,5} 8 (2,6)
Full image sqc4280 Cmma 67 orthorhombic {6,5} 8 (2,6)
Full image sqc4286 Cmma 67 orthorhombic {4,8,6,4} 8 (4,5)
Full image sqc4291 Cmma 67 orthorhombic {4,6,4,4} 10 (4,5)
Full image sqc4297 Cmma 67 orthorhombic {4,4,4,3} 12 (4,6)
Full image sqc4298 Cmma 67 orthorhombic {3,4,4,4} 12 (4,6)
Full image sqc4301 Cmma 67 orthorhombic {8,6,4,4} 8 (4,5)
Full image sqc4306 Cmma 67 orthorhombic {8,3} 8 (2,6)
Full image sqc4307 Cmma 67 orthorhombic {3,8} 8 (2,6)
Full image sqc4313 Cmma 67 orthorhombic {5,6} 8 (2,6)
Full image sqc4315 Cmma 67 orthorhombic {6,5} 8 (2,6)
Full image sqc4318 Cmma 67 orthorhombic {6,5} 8 (2,6)
Full image sqc4320 Cmma 67 orthorhombic {6,5} 8 (2,6)
Full image sqc4326 Cmma 67 orthorhombic {9,4} 6 (2,6)
Full image sqc4327 Cmma 67 orthorhombic {6,8} 6 (2,6)
Full image sqc4328 Cmma 67 orthorhombic {3,8} 8 (2,6)
Full image sqc4329 Cmma 67 orthorhombic {3,8} 8 (2,6)
Full image sqc4330 Cmma 67 orthorhombic {3,8} 8 (2,6)
Full image sqc4331 Cmma 67 orthorhombic {3,8} 8 (2,6)
Full image sqc4332 Cmma 67 orthorhombic {3,8} 8 (2,6)
Full image sqc4334 Cmma 67 orthorhombic {7,4} 8 (2,6)
Full image sqc4347 Cmma 67 orthorhombic {7,4} 8 (2,7)
Full image sqc4350 Cmma 67 orthorhombic {5,6} 8 (2,6)
Full image sqc4353 Cmma 67 orthorhombic {8,4,3,4} 10 (4,5)
Full image sqc4357 Cmma 67 orthorhombic {4,7} 8 (2,6)
Full image sqc4370 Cmma 67 orthorhombic {4,6,8,4} 8 (4,5)
Full image sqc4378 Cmma 67 orthorhombic {8,3} 8 (2,6)
Full image sqc4379 Cmma 67 orthorhombic {3,8} 8 (2,6)
Full image sqc4380 Cmma 67 orthorhombic {3,8} 8 (2,6)
Full image sqc4384 Cmma 67 orthorhombic {8,4,4,6} 8 (4,5)
Full image sqc4389 Cmma 67 orthorhombic {5,6} 8 (2,6)
Full image sqc4394 Cmma 67 orthorhombic {5,6} 8 (2,6)
Full image sqc4403 Cmma 67 orthorhombic {4,6} 10 (2,5)
Full image sqc4408 Cmma 67 orthorhombic {4,6} 10 (2,5)
Full image sqc4409 Cmma 67 orthorhombic {5,6} 8 (2,6)
Full image sqc4412 Cmma 67 orthorhombic {5,6} 8 (2,6)
Full image sqc4414 Cmma 67 orthorhombic {5,6} 8 (2,6)
Full image sqc4416 Cmma 67 orthorhombic {5,6} 8 (2,6)
Full image sqc4417 Cmma 67 orthorhombic {3,5} 12 (2,5)
Full image sqc4419 Cmma 67 orthorhombic {3,5} 12 (2,5)
Full image sqc4420 Cmma 67 orthorhombic {4,3,4,4} 12 (4,6)
Full image sqc4483 Cmma 67 orthorhombic {6,4} 10 (2,5)
Full image sqc4517 Cmma 67 orthorhombic {3,4,4,4} 12 (4,6)
Full image sqc4519 Cmma 67 orthorhombic {4,4,6,4} 10 (4,5)
Full image sqc4522 Cmma 67 orthorhombic {4,3,4,4} 12 (4,6)
Full image sqc4524 Cmma 67 orthorhombic {3,4,4,4} 12 (4,6)
Full image sqc4535 Cmma 67 orthorhombic {8,6,4,4} 8 (4,5)
Full image sqc4536 Cmma 67 orthorhombic {4,4,3,4} 12 (4,6)
Full image sqc4537 Cmma 67 orthorhombic {4,3,4,4} 12 (4,6)
Full image sqc4538 Cmma 67 orthorhombic {4,4,4,3} 12 (4,6)
Full image sqc4539 Cmma 67 orthorhombic {4,3,4,4} 12 (4,6)
Full image sqc4541 Cmma 67 orthorhombic {4,4,4,3} 12 (4,6)
Full image sqc4542 Cmma 67 orthorhombic {3,4,4,4} 12 (4,6)
Full image sqc4551 Cmma 67 orthorhombic {4,8,4,6} 8 (4,5)
Full image sqc4564 Cmma 67 orthorhombic {4,4,6,4} 10 (4,6)
Full image sqc4566 Cmma 67 orthorhombic {6,4,4,4} 10 (4,5)
Full image sqc4567 Cmma 67 orthorhombic {4,4,3,4} 12 (4,6)
Full image sqc4568 Cmma 67 orthorhombic {4,4,3,4} 12 (4,6)
Full image sqc4571 Cmma 67 orthorhombic {3,4,4,4} 12 (4,6)
Full image sqc4574 Cmma 67 orthorhombic {4,8,3,4} 10 (4,6)
Full image sqc4588 Cmma 67 orthorhombic {4,6} 10 (2,5)
Full image sqc4590 Cmma 67 orthorhombic {4,4,4,6} 10 (4,5)
Full image sqc4591 Cmma 67 orthorhombic {4,4,6,4} 10 (4,6)
Full image sqc4594 Cmma 67 orthorhombic {4,6} 10 (2,5)
Full image sqc4597 Cmma 67 orthorhombic {4,3,4,8} 10 (4,5)
Full image sqc4598 Cmma 67 orthorhombic {3,8,4,4} 10 (4,6)
Full image sqc4599 Cmma 67 orthorhombic {3,8,4,4} 10 (4,6)
Full image sqc4606 Cmma 67 orthorhombic {4,4,6,4} 10 (4,5)
Full image sqc4608 Cmma 67 orthorhombic {4,4,6,4} 10 (4,5)
Full image sqc4609 Cmma 67 orthorhombic {4,4,4,6} 10 (4,5)
Full image sqc4639 Cmma 67 orthorhombic {4,3,4,4} 12 (4,6)
Full image sqc4642 Cmma 67 orthorhombic {4,3,4,4} 12 (4,6)
Full image sqc4645 Cmma 67 orthorhombic {4,3,4,4} 12 (4,6)
Full image sqc4647 Cmma 67 orthorhombic {4,6} 10 (2,5)