Cmma

Number67
Symmetry Classorthorhombic
ChiralN

s-nets

872 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc6313 Cmma 67 orthorhombic {6,4} 12 (2,7)
Full image sqc6414 Cmma 67 orthorhombic {8,4,4,4,8} 10 (5,6)
Full image sqc6422 Cmma 67 orthorhombic {8,3} 12 (2,7)
Full image sqc6423 Cmma 67 orthorhombic {8,5} 10 (2,7)
Full image sqc6440 Cmma 67 orthorhombic {6,4} 12 (2,7)
Full image sqc6450 Cmma 67 orthorhombic {4,6} 12 (2,7)
Full image sqc6467 Cmma 67 orthorhombic {3,8} 12 (2,7)
Full image sqc6469 Cmma 67 orthorhombic {4,6} 12 (2,7)
Full image sqc6475 Cmma 67 orthorhombic {8,3} 12 (2,7)
Full image sqc6476 Cmma 67 orthorhombic {8,3} 12 (2,7)
Full image sqc6477 Cmma 67 orthorhombic {3,8} 12 (2,7)
Full image sqc6485 Cmma 67 orthorhombic {6,4} 12 (2,7)
Full image sqc6486 Cmma 67 orthorhombic {6,4} 12 (2,7)
Full image sqc6509 Cmma 67 orthorhombic {4,6} 10 (2,6)
Full image sqc6522 Cmma 67 orthorhombic {4,8,4,4,8} 10 (5,6)
Full image sqc6527 Cmma 67 orthorhombic {8,3} 12 (2,7)
Full image sqc6538 Cmma 67 orthorhombic {6,4} 12 (2,7)
Full image sqc6542 Cmma 67 orthorhombic {4,6} 10 (2,6)
Full image sqc6544 Cmma 67 orthorhombic {6,4} 12 (2,7)
Full image sqc6556 Cmma 67 orthorhombic {4,6} 10 (2,6)
Full image sqc6580 Cmma 67 orthorhombic {8,5} 10 (2,7)
Full image sqc6581 Cmma 67 orthorhombic {4,5} 12 (2,7)
Full image sqc6590 Cmma 67 orthorhombic {4,5} 12 (2,7)
Full image sqc6652 Cmma 67 orthorhombic {4,4,4,4,4} 14 (5,7)
Full image sqc6668 Cmma 67 orthorhombic {4,4,4,4,4} 14 (5,7)
Full image sqc6669 Cmma 67 orthorhombic {4,4,4,4,4} 14 (5,7)
Full image sqc6671 Cmma 67 orthorhombic {4,6} 12 (2,7)
Full image sqc6686 Cmma 67 orthorhombic {6,4} 12 (2,7)
Full image sqc6689 Cmma 67 orthorhombic {6,4} 12 (2,7)
Full image sqc6707 Cmma 67 orthorhombic {4,4,4,4,4} 14 (5,7)
Full image sqc6708 Cmma 67 orthorhombic {4,4,4,4,4} 14 (5,7)
Full image sqc6716 Cmma 67 orthorhombic {4,4,8,4,4} 12 (5,7)
Full image sqc6724 Cmma 67 orthorhombic {4,8,4,4,4} 12 (5,7)
Full image sqc6760 Cmma 67 orthorhombic {4,8,4,4,4} 12 (5,7)
Full image sqc6763 Cmma 67 orthorhombic {4,8,4,4,4} 12 (5,7)
Full image sqc6782 Cmma 67 orthorhombic {6,4} 10 (2,6)
Full image sqc6783 Cmma 67 orthorhombic {6,4} 10 (2,6)
Full image sqc6821 Cmma 67 orthorhombic {4,5} 12 (2,7)
Full image sqc6828 Cmma 67 orthorhombic {5,4} 12 (2,7)
Full image sqc6831 Cmma 67 orthorhombic {4,5} 12 (2,7)
Full image sqc6852 Cmma 67 orthorhombic {4,4,4,4,4} 14 (5,7)
Full image sqc6861 Cmma 67 orthorhombic {4,4,4,4,4} 14 (5,7)
Full image sqc6872 Cmma 67 orthorhombic {4,4,4,4,4} 14 (5,7)
Full image sqc6875 Cmma 67 orthorhombic {4,4,4,4,4} 14 (5,7)
Full image sqc6901 Cmma 67 orthorhombic {4,4,4,4,4} 14 (5,7)
Full image sqc6902 Cmma 67 orthorhombic {4,4,4,4,4} 14 (5,7)
Full image sqc6909 Cmma 67 orthorhombic {4,4,4,4,4} 14 (5,7)
Full image sqc6911 Cmma 67 orthorhombic {4,3} 16 (2,6)
Full image sqc6913 Cmma 67 orthorhombic {4,4,4,3,3,4} 16 (6,6)
Full image sqc6914 Cmma 67 orthorhombic {4,3,3,4,4,4} 16 (6,6)
Full image sqc6933 Cmma 67 orthorhombic {4,4,4,4,4} 14 (5,7)
Full image sqc6935 Cmma 67 orthorhombic {4,3} 16 (2,6)
Full image sqc6936 Cmma 67 orthorhombic {4,4,4,4,4} 14 (5,7)
Full image sqc7008 Cmma 67 orthorhombic {10,5} 10 (2,7)
Full image sqc7026 Cmma 67 orthorhombic {7,4} 12 (2,7)
Full image sqc7034 Cmma 67 orthorhombic {5,5} 12 (2,7)
Full image sqc7036 Cmma 67 orthorhombic {5,5} 12 (2,7)
Full image sqc7041 Cmma 67 orthorhombic {4,4,3,4,4,4} 16 (6,7)
Full image sqc7075 Cmma 67 orthorhombic {9,3} 12 (2,8)
Full image sqc7090 Cmma 67 orthorhombic {5,5} 12 (2,7)
Full image sqc7091 Cmma 67 orthorhombic {9,3} 12 (2,8)
Full image sqc7093 Cmma 67 orthorhombic {4,7} 12 (2,7)
Full image sqc7095 Cmma 67 orthorhombic {7,4} 12 (2,8)
Full image sqc7096 Cmma 67 orthorhombic {4,7} 12 (2,7)
Full image sqc7099 Cmma 67 orthorhombic {6,6} 10 (2,7)
Full image sqc7100 Cmma 67 orthorhombic {3,6} 12 (2,7)
Full image sqc7101 Cmma 67 orthorhombic {3,6} 12 (2,7)
Full image sqc7121 Cmma 67 orthorhombic {6,6} 10 (2,7)
Full image sqc7122 Cmma 67 orthorhombic {3,6} 12 (2,7)
Full image sqc7128 Cmma 67 orthorhombic {3,6} 12 (2,7)
Full image sqc7129 Cmma 67 orthorhombic {6,6} 10 (2,7)
Full image sqc7135 Cmma 67 orthorhombic {3,6} 12 (2,7)
Full image sqc7136 Cmma 67 orthorhombic {3,6} 12 (2,7)
Full image sqc7144 Cmma 67 orthorhombic {5,5} 12 (2,7)
Full image sqc7145 Cmma 67 orthorhombic {5,5} 12 (2,7)
Full image sqc7146 Cmma 67 orthorhombic {5,5} 12 (2,7)
Full image sqc7152 Cmma 67 orthorhombic {5,5} 12 (2,7)
Full image sqc7196 Cmma 67 orthorhombic {3,4,4,4,4,4} 16 (6,7)
Full image sqc7211 Cmma 67 orthorhombic {5,5} 12 (2,7)
Full image sqc7214 Cmma 67 orthorhombic {5,5} 12 (2,7)
Full image sqc7215 Cmma 67 orthorhombic {5,5} 12 (2,7)
Full image sqc7218 Cmma 67 orthorhombic {4,3,4,4,4,4} 16 (6,7)
Full image sqc7219 Cmma 67 orthorhombic {4,4,6,4,4,4} 14 (6,7)
Full image sqc7220 Cmma 67 orthorhombic {4,3,4,4,4,4} 16 (6,7)
Full image sqc7240 Cmma 67 orthorhombic {4,4,4,6,4,4} 14 (6,7)
Full image sqc7241 Cmma 67 orthorhombic {4,4,6,4,4,4} 14 (6,7)
Full image sqc7248 Cmma 67 orthorhombic {4,8,3,4,4,4} 14 (6,7)
Full image sqc7253 Cmma 67 orthorhombic {4,8,3,4,4,4} 14 (6,7)
Full image sqc7285 Cmma 67 orthorhombic {6,3} 12 (2,7)
Full image sqc7286 Cmma 67 orthorhombic {6,3} 12 (2,7)
Full image sqc7287 Cmma 67 orthorhombic {6,3} 12 (2,7)
Full image sqc7288 Cmma 67 orthorhombic {6,3} 12 (2,7)
Full image sqc7289 Cmma 67 orthorhombic {6,3} 12 (2,7)
Full image sqc7334 Cmma 67 orthorhombic {4,4,3,4,4,4} 16 (6,7)
Full image sqc7342 Cmma 67 orthorhombic {3,4,4,4,4,4} 16 (6,7)
Full image sqc7347 Cmma 67 orthorhombic {4,3,4,4,4,4} 16 (6,7)
Full image sqc7355 Cmma 67 orthorhombic {4,4,3,4,4,4} 16 (6,7)
Full image sqc7364 Cmma 67 orthorhombic {3,4,4,4,4,4} 16 (6,7)
Full image sqc7366 Cmma 67 orthorhombic {4,4,4,6,4,4} 14 (6,7)
Full image sqc7369 Cmma 67 orthorhombic {3,4,4,4,4,4} 16 (6,7)