Cmma

Number67
Symmetry Classorthorhombic
ChiralN

s-nets

872 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc5583 Cmma 67 orthorhombic {4,4,4,4} 12 (4,6)
Full image sqc5639 Cmma 67 orthorhombic {14,3} 10 (2,7)
Full image sqc5641 Cmma 67 orthorhombic {10,4} 10 (2,6)
Full image sqc5642 Cmma 67 orthorhombic {3,10} 8 (2,7)
Full image sqc5643 Cmma 67 orthorhombic {10,3} 8 (2,7)
Full image sqc5649 Cmma 67 orthorhombic {3,8,4,4,4} 12 (5,6)
Full image sqc5653 Cmma 67 orthorhombic {10,4} 10 (2,7)
Full image sqc5679 Cmma 67 orthorhombic {5,8} 8 (2,7)
Full image sqc5680 Cmma 67 orthorhombic {7,6} 8 (2,7)
Full image sqc5685 Cmma 67 orthorhombic {8,3,4,4,4} 12 (5,6)
Full image sqc5690 Cmma 67 orthorhombic {5,6} 10 (2,6)
Full image sqc5698 Cmma 67 orthorhombic {5,4} 12 (2,6)
Full image sqc5703 Cmma 67 orthorhombic {5,8} 8 (2,7)
Full image sqc5707 Cmma 67 orthorhombic {4,4,3,4,4} 14 (5,7)
Full image sqc5708 Cmma 67 orthorhombic {4,4,4,3,4} 14 (5,7)
Full image sqc5715 Cmma 67 orthorhombic {4,10} 10 (2,6)
Full image sqc5743 Cmma 67 orthorhombic {4,8,6,4,4} 10 (5,6)
Full image sqc5748 Cmma 67 orthorhombic {4,8,6,4,4} 10 (5,6)
Full image sqc5750 Cmma 67 orthorhombic {4,10} 10 (2,6)
Full image sqc5752 Cmma 67 orthorhombic {5,8} 8 (2,7)
Full image sqc5757 Cmma 67 orthorhombic {4,4,6,4,4} 12 (5,6)
Full image sqc5760 Cmma 67 orthorhombic {3,4,4,4,4} 14 (5,7)
Full image sqc5761 Cmma 67 orthorhombic {3,4,4,4,4} 14 (5,7)
Full image sqc5764 Cmma 67 orthorhombic {3,4,8,4,4} 12 (5,6)
Full image sqc5777 Cmma 67 orthorhombic {5,4} 12 (2,6)
Full image sqc5779 Cmma 67 orthorhombic {3,7} 12 (2,6)
Full image sqc5784 Cmma 67 orthorhombic {7,3} 12 (2,7)
Full image sqc5788 Cmma 67 orthorhombic {3,7} 12 (2,6)
Full image sqc5807 Cmma 67 orthorhombic {7,3} 12 (2,7)
Full image sqc5811 Cmma 67 orthorhombic {4,4,4,4,6} 12 (5,6)
Full image sqc5818 Cmma 67 orthorhombic {5,6} 10 (2,6)
Full image sqc5826 Cmma 67 orthorhombic {5,8} 8 (2,7)
Full image sqc5829 Cmma 67 orthorhombic {4,5} 12 (2,6)
Full image sqc5831 Cmma 67 orthorhombic {6,5} 10 (2,6)
Full image sqc5832 Cmma 67 orthorhombic {6,5} 10 (2,6)
Full image sqc5833 Cmma 67 orthorhombic {3,5} 12 (2,6)
Full image sqc5837 Cmma 67 orthorhombic {6,5} 10 (2,6)
Full image sqc5845 Cmma 67 orthorhombic {4,5} 12 (2,6)
Full image sqc5848 Cmma 67 orthorhombic {3,5} 12 (2,6)
Full image sqc5850 Cmma 67 orthorhombic {4,5} 12 (2,6)
Full image sqc5851 Cmma 67 orthorhombic {5,4} 12 (2,6)
Full image sqc5853 Cmma 67 orthorhombic {5,4} 12 (2,6)
Full image sqc5907 Cmma 67 orthorhombic {6,4,4,4,4} 12 (5,6)
Full image sqc5909 Cmma 67 orthorhombic {4,3,4,4,4} 14 (5,6)
Full image sqc5925 Cmma 67 orthorhombic {4,4,4,6,4} 12 (5,6)
Full image sqc5942 Cmma 67 orthorhombic {5,4} 12 (2,6)
Full image sqc5946 Cmma 67 orthorhombic {4,5} 12 (2,6)
Full image sqc5947 Cmma 67 orthorhombic {4,4,6,4,4} 12 (5,6)
Full image sqc5948 Cmma 67 orthorhombic {4,4,3,4,4} 14 (5,7)
Full image sqc5949 Cmma 67 orthorhombic {4,6,4,4,4} 12 (5,6)
Full image sqc5951 Cmma 67 orthorhombic {4,4,3,4,4} 14 (5,6)
Full image sqc5953 Cmma 67 orthorhombic {4,4,3,8,4} 12 (5,6)
Full image sqc5958 Cmma 67 orthorhombic {3,4,4,8,4} 12 (5,6)
Full image sqc5960 Cmma 67 orthorhombic {8,3,4,4,4} 12 (5,6)
Full image sqc5967 Cmma 67 orthorhombic {5,6} 10 (2,6)
Full image sqc5972 Cmma 67 orthorhombic {4,6,4,4,4} 12 (5,6)
Full image sqc5976 Cmma 67 orthorhombic {6,5} 10 (2,6)
Full image sqc5977 Cmma 67 orthorhombic {6,5} 10 (2,6)
Full image sqc5979 Cmma 67 orthorhombic {4,6,4,4,4} 12 (5,6)
Full image sqc5982 Cmma 67 orthorhombic {4,4,6,4,4} 12 (5,6)
Full image sqc5984 Cmma 67 orthorhombic {4,3,4,8,4} 12 (5,6)
Full image sqc5987 Cmma 67 orthorhombic {8,4,3,4,4} 12 (5,6)
Full image sqc5994 Cmma 67 orthorhombic {4,8,3,4,4} 12 (5,6)
Full image sqc6000 Cmma 67 orthorhombic {4,4,6,4,4} 12 (5,6)
Full image sqc6001 Cmma 67 orthorhombic {4,4,4,6,4} 12 (5,6)
Full image sqc6003 Cmma 67 orthorhombic {4,6,4,4,4} 12 (5,6)
Full image sqc6009 Cmma 67 orthorhombic {4,4,4,6,4} 12 (5,6)
Full image sqc6012 Cmma 67 orthorhombic {4,4,4,4,6} 12 (5,6)
Full image sqc6015 Cmma 67 orthorhombic {4,6,4,4,4} 12 (5,6)
Full image sqc6019 Cmma 67 orthorhombic {5,3} 12 (2,6)
Full image sqc6022 Cmma 67 orthorhombic {6,5} 10 (2,6)
Full image sqc6030 Cmma 67 orthorhombic {3,5} 12 (2,6)
Full image sqc6033 Cmma 67 orthorhombic {5,3} 12 (2,6)
Full image sqc6036 Cmma 67 orthorhombic {3,5} 12 (2,6)
Full image sqc6038 Cmma 67 orthorhombic {5,3} 12 (2,6)
Full image sqc6040 Cmma 67 orthorhombic {5,6} 10 (2,6)
Full image sqc6043 Cmma 67 orthorhombic {5,3} 12 (2,6)
Full image sqc6046 Cmma 67 orthorhombic {5,3} 12 (2,6)
Full image sqc6054 Cmma 67 orthorhombic {5,3} 12 (2,6)
Full image sqc6055 Cmma 67 orthorhombic {5,3} 12 (2,6)
Full image sqc6059 Cmma 67 orthorhombic {3,5} 12 (2,6)
Full image sqc6061 Cmma 67 orthorhombic {5,3} 12 (2,6)
Full image sqc6080 Cmma 67 orthorhombic {4,4,4,4,6} 12 (5,6)
Full image sqc6085 Cmma 67 orthorhombic {4,4,3,4,4} 14 (5,7)
Full image sqc6092 Cmma 67 orthorhombic {4,4,4,3,4} 14 (5,7)
Full image sqc6101 Cmma 67 orthorhombic {3,4,4,4,4} 14 (5,7)
Full image sqc6103 Cmma 67 orthorhombic {4,4,3,4,4} 14 (5,7)
Full image sqc6104 Cmma 67 orthorhombic {4,4,6,4,4} 12 (5,6)
Full image sqc6105 Cmma 67 orthorhombic {3,4,4,4,4} 14 (5,7)
Full image sqc6106 Cmma 67 orthorhombic {3,4,4,4,4} 14 (5,6)
Full image sqc6108 Cmma 67 orthorhombic {4,4,4,4,3} 14 (5,6)
Full image sqc6111 Cmma 67 orthorhombic {4,3,4,4,4} 14 (5,6)
Full image sqc6113 Cmma 67 orthorhombic {4,4,4,4,3} 14 (5,6)
Full image sqc6114 Cmma 67 orthorhombic {4,3,4,4,4} 14 (5,6)
Full image sqc6250 Cmma 67 orthorhombic {12,4} 10 (2,7)
Full image sqc6285 Cmma 67 orthorhombic {8,3} 12 (2,7)
Full image sqc6289 Cmma 67 orthorhombic {8,3} 12 (2,7)
Full image sqc6299 Cmma 67 orthorhombic {4,8,4,4,4} 12 (5,7)
Full image sqc6302 Cmma 67 orthorhombic {4,4,8,4,4} 12 (5,7)
Full image sqc6309 Cmma 67 orthorhombic {6,4} 12 (2,7)