Cmma

Number67
Symmetry Classorthorhombic
ChiralN

s-nets

872 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc3253 Cmma 67 orthorhombic {5,10} 6 (2,5)
Full image sqc3265 Cmma 67 orthorhombic {4,3,4,6} 10 (4,5)
Full image sqc3266 Cmma 67 orthorhombic {4,4,4,4} 10 (4,5)
Full image sqc3267 Cmma 67 orthorhombic {4,4,4,4} 10 (4,5)
Full image sqc3269 Cmma 67 orthorhombic {3,4,3,4} 12 (4,5)
Full image sqc3270 Cmma 67 orthorhombic {4,3,4,3} 12 (4,5)
Full image sqc3273 Cmma 67 orthorhombic {4,4,4} 10 (3,6)
Full image sqc3286 Cmma 67 orthorhombic {5,10} 6 (2,5)
Full image sqc3343 Cmma 67 orthorhombic {8,3} 10 (2,5)
Full image sqc3375 Cmma 67 orthorhombic {4,8,4,4} 8 (4,5)
Full image sqc3377 Cmma 67 orthorhombic {5,10} 6 (2,5)
Full image sqc3380 Cmma 67 orthorhombic {8,6} 6 (2,6)
Full image sqc3381 Cmma 67 orthorhombic {6,8} 6 (2,6)
Full image sqc3382 Cmma 67 orthorhombic {8,6} 6 (2,6)
Full image sqc3384 Cmma 67 orthorhombic {8,4} 6 (2,5)
Full image sqc3386 Cmma 67 orthorhombic {3,8} 10 (2,5)
Full image sqc3405 Cmma 67 orthorhombic {6,4} 8 (2,6)
Full image sqc3415 Cmma 67 orthorhombic {6,6,4,4} 8 (4,4)
Full image sqc3418 Cmma 67 orthorhombic {6,4} 8 (2,6)
Full image sqc3420 Cmma 67 orthorhombic {4,6,3,4} 10 (4,5)
Full image sqc3434 Cmma 67 orthorhombic {4,4,4,4} 10 (4,5)
Full image sqc3447 Cmma 67 orthorhombic {8,4} 6 (2,5)
Full image sqc3453 Cmma 67 orthorhombic {4,6} 8 (2,6)
Full image sqc3456 Cmma 67 orthorhombic {5,5} 8 (2,5)
Full image sqc3462 Cmma 67 orthorhombic {8,4} 6 (2,5)
Full image sqc3463 Cmma 67 orthorhombic {4,8} 6 (2,5)
Full image sqc3464 Cmma 67 orthorhombic {8,4} 6 (2,5)
Full image sqc3467 Cmma 67 orthorhombic {6,7} 6 (2,5)
Full image sqc3469 Cmma 67 orthorhombic {7,3} 8 (2,5)
Full image sqc3470 Cmma 67 orthorhombic {7,3} 8 (2,5)
Full image sqc3472 Cmma 67 orthorhombic {4,6} 8 (2,6)
Full image sqc3489 Cmma 67 orthorhombic {6,7} 6 (2,6)
Full image sqc3490 Cmma 67 orthorhombic {3,7} 8 (2,6)
Full image sqc3491 Cmma 67 orthorhombic {7,3} 8 (2,6)
Full image sqc3492 Cmma 67 orthorhombic {3,7} 8 (2,6)
Full image sqc3497 Cmma 67 orthorhombic {6,8} 6 (2,6)
Full image sqc3499 Cmma 67 orthorhombic {6,4} 8 (2,6)
Full image sqc3500 Cmma 67 orthorhombic {6,4} 8 (2,6)
Full image sqc3527 Cmma 67 orthorhombic {6,7} 6 (2,5)
Full image sqc3528 Cmma 67 orthorhombic {3,7} 8 (2,5)
Full image sqc3529 Cmma 67 orthorhombic {7,3} 8 (2,5)
Full image sqc3531 Cmma 67 orthorhombic {6,4} 8 (2,6)
Full image sqc3551 Cmma 67 orthorhombic {8,4} 6 (2,5)
Full image sqc3552 Cmma 67 orthorhombic {7,6} 6 (2,6)
Full image sqc3553 Cmma 67 orthorhombic {7,3} 8 (2,6)
Full image sqc3556 Cmma 67 orthorhombic {6,6,4,4} 8 (4,4)
Full image sqc3563 Cmma 67 orthorhombic {6,4} 8 (2,6)
Full image sqc3569 Cmma 67 orthorhombic {6,4} 8 (2,6)
Full image sqc3586 Cmma 67 orthorhombic {5,5} 8 (2,5)
Full image sqc3592 Cmma 67 orthorhombic {5,5} 8 (2,5)
Full image sqc3595 Cmma 67 orthorhombic {6,3,4,4} 10 (4,5)
Full image sqc3605 Cmma 67 orthorhombic {4,8,4} 8 (3,6)
Full image sqc3659 Cmma 67 orthorhombic {4,4,4,4} 10 (4,6)
Full image sqc3676 Cmma 67 orthorhombic {4,4,4} 10 (3,6)
Full image sqc3685 Cmma 67 orthorhombic {4,4,4} 10 (3,6)
Full image sqc3689 Cmma 67 orthorhombic {4,4,4} 10 (3,6)
Full image sqc3696 Cmma 67 orthorhombic {4,4,4,4} 10 (4,5)
Full image sqc3700 Cmma 67 orthorhombic {3,4,3,4} 12 (4,5)
Full image sqc3711 Cmma 67 orthorhombic {4,6} 8 (2,6)
Full image sqc3712 Cmma 67 orthorhombic {6,3,4,4} 10 (4,5)
Full image sqc3713 Cmma 67 orthorhombic {4,4,4,4} 10 (4,6)
Full image sqc3714 Cmma 67 orthorhombic {3,4,3,4} 12 (4,5)
Full image sqc3715 Cmma 67 orthorhombic {4,4,4,4} 10 (4,6)
Full image sqc3716 Cmma 67 orthorhombic {3,3,4,4} 12 (4,5)
Full image sqc3719 Cmma 67 orthorhombic {4,8,4} 8 (3,5)
Full image sqc3720 Cmma 67 orthorhombic {4,4,4,4} 10 (4,5)
Full image sqc3736 Cmma 67 orthorhombic {6,4} 8 (2,6)
Full image sqc3742 Cmma 67 orthorhombic {4,6,3,4} 10 (4,5)
Full image sqc3745 Cmma 67 orthorhombic {4,4,4} 10 (3,6)
Full image sqc3746 Cmma 67 orthorhombic {4,4,4} 10 (3,6)
Full image sqc3749 Cmma 67 orthorhombic {3,3,4,4} 12 (4,5)
Full image sqc3758 Cmma 67 orthorhombic {3,6,4,4} 10 (4,5)
Full image sqc3772 Cmma 67 orthorhombic {4,6,3,4} 10 (4,5)
Full image sqc3773 Cmma 67 orthorhombic {4,3,4,6} 10 (4,5)
Full image sqc3774 Cmma 67 orthorhombic {4,8,4} 8 (3,5)
Full image sqc3821 Cmma 67 orthorhombic {4,4,4,4} 10 (4,5)
Full image sqc3825 Cmma 67 orthorhombic {4,4,4,4} 10 (4,5)
Full image sqc3827 Cmma 67 orthorhombic {3,4,3,4} 12 (4,5)
Full image sqc3830 Cmma 67 orthorhombic {3,4,3,4} 12 (4,5)
Full image sqc3842 Cmma 67 orthorhombic {4,4,4} 10 (3,6)
Full image sqc3843 Cmma 67 orthorhombic {4,4,4,4} 10 (4,5)
Full image sqc3845 Cmma 67 orthorhombic {4,4,4} 10 (3,6)
Full image sqc3848 Cmma 67 orthorhombic {4,4} 10 (2,4)
Full image sqc3860 Cmma 67 orthorhombic {4,4,4,4} 10 (4,5)
Full image sqc3861 Cmma 67 orthorhombic {4,4,4} 10 (3,6)
Full image sqc3863 Cmma 67 orthorhombic {4,4} 10 (2,4)
Full image sqc3876 Cmma 67 orthorhombic {4,4,4} 10 (3,6)
Full image sqc3885 Cmma 67 orthorhombic {3,4} 12 (2,5)
Full image sqc3886 Cmma 67 orthorhombic {4,3} 12 (2,5)
Full image sqc4044 Cmma 67 orthorhombic {10,6} 6 (2,6)
Full image sqc4053 Cmma 67 orthorhombic {8,4,4,6} 8 (4,5)
Full image sqc4063 Cmma 67 orthorhombic {10,3} 10 (2,6)
Full image sqc4078 Cmma 67 orthorhombic {8,6,4,4} 8 (4,5)
Full image sqc4115 Cmma 67 orthorhombic {6,8} 6 (2,6)
Full image sqc4116 Cmma 67 orthorhombic {3,8} 8 (2,6)
Full image sqc4117 Cmma 67 orthorhombic {3,8} 8 (2,6)
Full image sqc4127 Cmma 67 orthorhombic {6,8} 6 (2,6)
Full image sqc4128 Cmma 67 orthorhombic {3,8} 8 (2,6)
Full image sqc4129 Cmma 67 orthorhombic {8,3} 8 (2,6)
Full image sqc4130 Cmma 67 orthorhombic {7,4} 8 (2,6)