Fddd

Number70
Symmetry Classorthorhombic
ChiralN

s-nets

816 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc7469 Fddd 70 orthorhombic {12,4} 8 (2,5)
Full image sqc7470 Fddd 70 orthorhombic {12,4} 8 (2,5)
Full image sqc7471 Fddd 70 orthorhombic {6,10} 8 (2,5)
Full image sqc7472 Fddd 70 orthorhombic {3,10} 12 (2,5)
Full image sqc7473 Fddd 70 orthorhombic {3,10} 12 (2,5)
Full image sqc7474 Fddd 70 orthorhombic {4,8} 12 (2,5)
Full image sqc7475 Fddd 70 orthorhombic {12,4} 8 (2,5)
Full image sqc7476 Fddd 70 orthorhombic {6,10} 8 (2,5)
Full image sqc7478 Fddd 70 orthorhombic {12,4} 8 (2,5)
Full image sqc7481 Fddd 70 orthorhombic {8,4} 12 (2,5)
Full image sqc7482 Fddd 70 orthorhombic {3,10} 12 (2,5)
Full image sqc7483 Fddd 70 orthorhombic {6,10} 8 (2,5)
Full image sqc7485 Fddd 70 orthorhombic {3,10} 12 (2,5)
Full image sqc7493 Fddd 70 orthorhombic {4,8,4} 12 (3,5)
Full image sqc7514 Fddd 70 orthorhombic {6,10} 8 (2,5)
Full image sqc7516 Fddd 70 orthorhombic {12,4} 8 (2,5)
Full image sqc7526 Fddd 70 orthorhombic {4,8} 12 (2,5)
Full image sqc7527 Fddd 70 orthorhombic {3,10} 12 (2,5)
Full image sqc7528 Fddd 70 orthorhombic {4,8} 12 (2,5)
Full image sqc7529 Fddd 70 orthorhombic {3,10} 12 (2,5)
Full image sqc7530 Fddd 70 orthorhombic {3,10} 12 (2,5)
Full image sqc7531 Fddd 70 orthorhombic {3,10} 12 (2,5)
Full image sqc7547 Fddd 70 orthorhombic {3,10} 12 (2,5)
Full image sqc7552 Fddd 70 orthorhombic {4,8,4} 12 (3,5)
Full image sqc7567 Fddd 70 orthorhombic {3,10} 12 (2,5)
Full image sqc7584 Fddd 70 orthorhombic {6,10} 8 (2,5)
Full image sqc7589 Fddd 70 orthorhombic {4,6} 12 (2,5)
Full image sqc7621 Fddd 70 orthorhombic {4,6} 12 (2,5)
Full image sqc7636 Fddd 70 orthorhombic {6,4} 12 (2,5)
Full image sqc7638 Fddd 70 orthorhombic {6,4} 12 (2,5)
Full image sqc7646 Fddd 70 orthorhombic {4,3,6} 16 (3,5)
Full image sqc7647 Fddd 70 orthorhombic {6,4} 12 (2,5)
Full image sqc7649 Fddd 70 orthorhombic {6,5} 12 (2,5)
Full image sqc7651 Fddd 70 orthorhombic {6,4} 12 (2,5)
Full image sqc7657 Fddd 70 orthorhombic {6,4} 12 (2,5)
Full image sqc7660 Fddd 70 orthorhombic {6,5} 12 (2,5)
Full image sqc7662 Fddd 70 orthorhombic {6,4} 12 (2,5)
Full image sqc7663 Fddd 70 orthorhombic {6,5} 12 (2,5)
Full image sqc7665 Fddd 70 orthorhombic {6,3,4} 16 (3,5)
Full image sqc7666 Fddd 70 orthorhombic {4,3,6} 16 (3,5)
Full image sqc7667 Fddd 70 orthorhombic {4,3,6} 16 (3,5)
Full image sqc7673 Fddd 70 orthorhombic {6,5} 12 (2,5)
Full image sqc7677 Fddd 70 orthorhombic {6,5} 12 (2,5)
Full image sqc7678 Fddd 70 orthorhombic {6,5} 12 (2,5)
Full image sqc7679 Fddd 70 orthorhombic {6,5} 12 (2,5)
Full image sqc7680 Fddd 70 orthorhombic {6,5} 12 (2,5)
Full image sqc7682 Fddd 70 orthorhombic {6,5} 12 (2,5)
Full image sqc7683 Fddd 70 orthorhombic {6,5} 12 (2,5)
Full image sqc7686 Fddd 70 orthorhombic {3,5} 16 (2,5)
Full image sqc7688 Fddd 70 orthorhombic {3,5} 16 (2,5)
Full image sqc7689 Fddd 70 orthorhombic {3,5} 16 (2,5)
Full image sqc7690 Fddd 70 orthorhombic {3,5} 16 (2,5)
Full image sqc7691 Fddd 70 orthorhombic {3,5} 16 (2,5)
Full image sqc7697 Fddd 70 orthorhombic {3,5} 16 (2,5)
Full image sqc7698 Fddd 70 orthorhombic {3,5} 16 (2,5)
Full image sqc7700 Fddd 70 orthorhombic {3,5} 16 (2,5)
Full image sqc7704 Fddd 70 orthorhombic {8,4,4} 12 (3,5)
Full image sqc7708 Fddd 70 orthorhombic {6,6,4} 12 (3,5)
Full image sqc7709 Fddd 70 orthorhombic {3,6,4} 16 (3,5)
Full image sqc7711 Fddd 70 orthorhombic {4,6,3} 16 (3,5)
Full image sqc7714 Fddd 70 orthorhombic {4,4,4} 16 (3,5)
Full image sqc7735 Fddd 70 orthorhombic {4,8} 12 (2,5)
Full image sqc7736 Fddd 70 orthorhombic {4,6} 12 (2,5)
Full image sqc7737 Fddd 70 orthorhombic {4,6} 12 (2,5)
Full image sqc7738 Fddd 70 orthorhombic {4,4,4} 16 (3,5)
Full image sqc7739 Fddd 70 orthorhombic {4,4,4} 16 (3,5)
Full image sqc7745 Fddd 70 orthorhombic {4,4,4} 16 (3,5)
Full image sqc7749 Fddd 70 orthorhombic {4,4,4} 16 (3,5)
Full image sqc7752 Fddd 70 orthorhombic {4,4} 16 (2,5)
Full image sqc7754 Fddd 70 orthorhombic {4,4} 16 (2,5)
Full image sqc7755 Fddd 70 orthorhombic {4,4,4} 16 (3,5)
Full image sqc7757 Fddd 70 orthorhombic {4,4,4} 16 (3,5)
Full image sqc7760 Fddd 70 orthorhombic {4,4,4} 16 (3,5)
Full image sqc7761 Fddd 70 orthorhombic {4,4,4} 16 (3,5)
Full image sqc7762 Fddd 70 orthorhombic {4,4,4} 16 (3,5)
Full image sqc7763 Fddd 70 orthorhombic {8,4,4} 12 (3,5)
Full image sqc7764 Fddd 70 orthorhombic {8,4,4} 12 (3,5)
Full image sqc7765 Fddd 70 orthorhombic {4,4,4} 16 (3,5)
Full image sqc7767 Fddd 70 orthorhombic {4,4,4} 16 (3,5)
Full image sqc7769 Fddd 70 orthorhombic {6,6,4} 12 (3,5)
Full image sqc7774 Fddd 70 orthorhombic {6,6,4} 12 (3,5)
Full image sqc7776 Fddd 70 orthorhombic {4,6,3} 16 (3,5)
Full image sqc7777 Fddd 70 orthorhombic {3,6,4} 16 (3,5)
Full image sqc7778 Fddd 70 orthorhombic {3,6,4} 16 (3,5)
Full image sqc7779 Fddd 70 orthorhombic {4,6,3} 16 (3,5)
Full image sqc7784 Fddd 70 orthorhombic {4,4,4} 16 (3,5)
Full image sqc7785 Fddd 70 orthorhombic {4,4,4} 16 (3,5)
Full image sqc7786 Fddd 70 orthorhombic {4,4,4} 16 (3,5)
Full image sqc7787 Fddd 70 orthorhombic {4,4,4} 16 (3,5)
Full image sqc7792 Fddd 70 orthorhombic {3,3,4} 20 (3,5)
Full image sqc7793 Fddd 70 orthorhombic {6,3,4} 16 (3,5)
Full image sqc7794 Fddd 70 orthorhombic {4,3,6} 16 (3,5)
Full image sqc7795 Fddd 70 orthorhombic {6,3,4} 16 (3,5)
Full image sqc7796 Fddd 70 orthorhombic {6,3,4} 16 (3,5)
Full image sqc7798 Fddd 70 orthorhombic {4,3,3} 20 (3,5)
Full image sqc7803 Fddd 70 orthorhombic {3,3,4} 20 (3,5)
Full image sqc7805 Fddd 70 orthorhombic {3,3,4} 20 (3,5)
Full image sqc7806 Fddd 70 orthorhombic {3,3,4} 20 (3,5)
Full image sqc7807 Fddd 70 orthorhombic {4,3,3} 20 (3,5)
Full image sqc7808 Fddd 70 orthorhombic {4,3,3} 20 (3,5)