Fddd

Number70
Symmetry Classorthorhombic
ChiralN

s-nets

816 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc8739 Fddd 70 orthorhombic {5,4} 16 (2,6)
Full image sqc8744 Fddd 70 orthorhombic {5,4} 16 (2,6)
Full image sqc8753 Fddd 70 orthorhombic {4,8,3} 16 (3,6)
Full image sqc8754 Fddd 70 orthorhombic {3,8,4} 16 (3,6)
Full image sqc8760 Fddd 70 orthorhombic {4,6,4} 16 (3,6)
Full image sqc8762 Fddd 70 orthorhombic {4,4,3,4} 20 (4,5)
Full image sqc8780 Fddd 70 orthorhombic {3,8,4} 16 (3,6)
Full image sqc8781 Fddd 70 orthorhombic {4,8,3} 16 (3,6)
Full image sqc8782 Fddd 70 orthorhombic {4,8,3} 16 (3,6)
Full image sqc8783 Fddd 70 orthorhombic {3,8,4} 16 (3,6)
Full image sqc8784 Fddd 70 orthorhombic {4,4,6} 16 (3,6)
Full image sqc8785 Fddd 70 orthorhombic {4,4,3} 20 (3,6)
Full image sqc8786 Fddd 70 orthorhombic {3,4,4} 20 (3,6)
Full image sqc8789 Fddd 70 orthorhombic {3,4,4} 20 (3,6)
Full image sqc8791 Fddd 70 orthorhombic {4,4,3} 20 (3,6)
Full image sqc8799 Fddd 70 orthorhombic {4,6,4} 16 (3,6)
Full image sqc8800 Fddd 70 orthorhombic {4,6,4} 16 (3,6)
Full image sqc8803 Fddd 70 orthorhombic {4,4,3,4} 20 (4,5)
Full image sqc8804 Fddd 70 orthorhombic {4,4,3,4} 20 (4,5)
Full image sqc8805 Fddd 70 orthorhombic {4,4,6} 16 (3,6)
Full image sqc8806 Fddd 70 orthorhombic {4,4,3} 20 (3,6)
Full image sqc8808 Fddd 70 orthorhombic {4,4,6} 16 (3,6)
Full image sqc8810 Fddd 70 orthorhombic {4,4,3} 20 (3,6)
Full image sqc8811 Fddd 70 orthorhombic {6,4,4} 16 (3,6)
Full image sqc8814 Fddd 70 orthorhombic {3,4,4} 20 (3,6)
Full image sqc8815 Fddd 70 orthorhombic {3,4,4} 20 (3,6)
Full image sqc8816 Fddd 70 orthorhombic {3,4,4} 20 (3,6)
Full image sqc8817 Fddd 70 orthorhombic {3,4,4} 20 (3,6)
Full image sqc8818 Fddd 70 orthorhombic {4,4,3} 20 (3,6)
Full image sqc8819 Fddd 70 orthorhombic {4,4,3} 20 (3,6)
Full image sqc8821 Fddd 70 orthorhombic {8,3,4} 16 (3,6)
Full image sqc8823 Fddd 70 orthorhombic {8,3,4} 16 (3,6)
Full image sqc8824 Fddd 70 orthorhombic {4,3,4} 20 (3,6)
Full image sqc8827 Fddd 70 orthorhombic {4,3,4} 20 (3,6)
Full image sqc8828 Fddd 70 orthorhombic {4,3,4} 20 (3,6)
Full image sqc8830 Fddd 70 orthorhombic {4,3,4} 20 (3,6)
Full image sqc8831 Fddd 70 orthorhombic {4,3,4} 20 (3,6)
Full image sqc8832 Fddd 70 orthorhombic {4,3,4} 20 (3,6)
Full image sqc8850 Fddd 70 orthorhombic {8,6,4} 12 (3,5)
Full image sqc8851 Fddd 70 orthorhombic {8,3,4} 16 (3,6)
Full image sqc8853 Fddd 70 orthorhombic {7,4} 12 (2,5)
Full image sqc8854 Fddd 70 orthorhombic {7,4} 12 (2,5)
Full image sqc8859 Fddd 70 orthorhombic {3,8,4} 16 (3,6)
Full image sqc8860 Fddd 70 orthorhombic {3,8,4} 16 (3,6)
Full image sqc8864 Fddd 70 orthorhombic {4,8,3} 16 (3,6)
Full image sqc8865 Fddd 70 orthorhombic {4,8,3} 16 (3,6)
Full image sqc8869 Fddd 70 orthorhombic {6,6} 12 (2,6)
Full image sqc8871 Fddd 70 orthorhombic {3,6} 16 (2,6)
Full image sqc8872 Fddd 70 orthorhombic {3,6} 16 (2,6)
Full image sqc8874 Fddd 70 orthorhombic {6,6} 12 (2,6)
Full image sqc8879 Fddd 70 orthorhombic {6,3} 16 (2,6)
Full image sqc8880 Fddd 70 orthorhombic {3,6} 16 (2,6)
Full image sqc8881 Fddd 70 orthorhombic {6,3} 16 (2,6)
Full image sqc8882 Fddd 70 orthorhombic {4,4,6} 16 (3,6)
Full image sqc8889 Fddd 70 orthorhombic {5,4} 16 (2,6)
Full image sqc8890 Fddd 70 orthorhombic {5,4} 16 (2,6)
Full image sqc8891 Fddd 70 orthorhombic {5,4} 16 (2,6)
Full image sqc8909 Fddd 70 orthorhombic {6,4,4} 16 (3,6)
Full image sqc8918 Fddd 70 orthorhombic {4,4,6} 16 (3,6)
Full image sqc8923 Fddd 70 orthorhombic {6,3,3} 20 (3,5)
Full image sqc8927 Fddd 70 orthorhombic {6,3,3} 20 (3,5)
Full image sqc8932 Fddd 70 orthorhombic {8,6,4} 12 (3,5)
Full image sqc9000 Fddd 70 orthorhombic {4,6,4} 16 (3,6)
Full image sqc9002 Fddd 70 orthorhombic {4,6,4} 16 (3,6)
Full image sqc9131 Fddd 70 orthorhombic {4,3,4} 20 (3,6)
Full image sqc9133 Fddd 70 orthorhombic {4,3,4} 20 (3,6)
Full image sqc9134 Fddd 70 orthorhombic {3,4,4} 20 (3,6)
Full image sqc9135 Fddd 70 orthorhombic {3,4,4} 20 (3,6)
Full image sqc9162 Fddd 70 orthorhombic {4,4,3,4} 20 (4,5)
Full image sqc9163 Fddd 70 orthorhombic {4,4,3,4} 20 (4,5)
Full image sqc9164 Fddd 70 orthorhombic {4,4,3} 20 (3,6)
Full image sqc9165 Fddd 70 orthorhombic {4,4,3} 20 (3,6)
Full image sqc9166 Fddd 70 orthorhombic {4,4,3} 20 (3,6)
Full image sqc9167 Fddd 70 orthorhombic {4,4,3} 20 (3,6)
Full image sqc9168 Fddd 70 orthorhombic {3,4,4} 20 (3,6)
Full image sqc9169 Fddd 70 orthorhombic {3,4,4} 20 (3,6)
Full image sqc9226 Fddd 70 orthorhombic {4,3,4} 20 (3,6)
Full image sqc9227 Fddd 70 orthorhombic {4,3,4} 20 (3,6)
Full image sqc9391 Fddd 70 orthorhombic {5,10} 12 (2,6)
Full image sqc9392 Fddd 70 orthorhombic {5,10} 12 (2,6)
Full image sqc9394 Fddd 70 orthorhombic {5,10} 12 (2,6)
Full image sqc9402 Fddd 70 orthorhombic {8,3,3} 20 (3,6)
Full image sqc9424 Fddd 70 orthorhombic {5,10} 12 (2,6)
Full image sqc9425 Fddd 70 orthorhombic {5,10} 12 (2,6)
Full image sqc9468 Fddd 70 orthorhombic {8,4} 12 (2,6)
Full image sqc9472 Fddd 70 orthorhombic {3,7} 16 (2,6)
Full image sqc9484 Fddd 70 orthorhombic {8,4} 12 (2,6)
Full image sqc9485 Fddd 70 orthorhombic {8,4} 12 (2,6)
Full image sqc9486 Fddd 70 orthorhombic {8,3,3} 20 (3,6)
Full image sqc9487 Fddd 70 orthorhombic {6,7} 12 (2,6)
Full image sqc9488 Fddd 70 orthorhombic {6,7} 12 (2,6)
Full image sqc9489 Fddd 70 orthorhombic {3,7} 16 (2,6)
Full image sqc9490 Fddd 70 orthorhombic {4,6} 16 (2,6)
Full image sqc9495 Fddd 70 orthorhombic {8,3,3} 20 (3,6)
Full image sqc9496 Fddd 70 orthorhombic {6,7} 12 (2,6)
Full image sqc9497 Fddd 70 orthorhombic {3,7} 16 (2,6)
Full image sqc9498 Fddd 70 orthorhombic {3,7} 16 (2,6)
Full image sqc9502 Fddd 70 orthorhombic {8,4} 12 (2,6)
Full image sqc9503 Fddd 70 orthorhombic {8,4} 12 (2,6)
Full image sqc9504 Fddd 70 orthorhombic {8,8,4} 12 (3,6)