Fddd

Number70
Symmetry Classorthorhombic
ChiralN

s-nets

816 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc10782 Fddd 70 orthorhombic {5,7} 16 (2,7)
Full image sqc10788 Fddd 70 orthorhombic {5,7} 16 (2,7)
Full image sqc10792 Fddd 70 orthorhombic {4,4,8,4} 20 (4,7)
Full image sqc10794 Fddd 70 orthorhombic {4,8,4,4} 20 (4,7)
Full image sqc10796 Fddd 70 orthorhombic {4,4,8,4} 20 (4,7)
Full image sqc10797 Fddd 70 orthorhombic {4,4,8,4} 20 (4,7)
Full image sqc10800 Fddd 70 orthorhombic {6,3,3} 24 (3,7)
Full image sqc10801 Fddd 70 orthorhombic {6,3,3} 24 (3,7)
Full image sqc10807 Fddd 70 orthorhombic {6,3,3} 24 (3,7)
Full image sqc10808 Fddd 70 orthorhombic {6,3,3} 24 (3,7)
Full image sqc10812 Fddd 70 orthorhombic {6,3,3} 24 (3,7)
Full image sqc10813 Fddd 70 orthorhombic {6,3,3} 24 (3,7)
Full image sqc10816 Fddd 70 orthorhombic {6,3,3} 24 (3,7)
Full image sqc10817 Fddd 70 orthorhombic {6,3,3} 24 (3,7)
Full image sqc10828 Fddd 70 orthorhombic {4,8,4,4} 20 (4,7)
Full image sqc10830 Fddd 70 orthorhombic {4,3,3,4,4} 28 (5,7)
Full image sqc10850 Fddd 70 orthorhombic {4,8,4,4} 20 (4,7)
Full image sqc10851 Fddd 70 orthorhombic {4,8,4,4} 20 (4,7)
Full image sqc10854 Fddd 70 orthorhombic {4,3,3,4,4} 28 (5,7)
Full image sqc10855 Fddd 70 orthorhombic {4,3,3,4,4} 28 (5,7)
Full image sqc10858 Fddd 70 orthorhombic {4,4,8,4} 20 (4,7)
Full image sqc10860 Fddd 70 orthorhombic {4,4,4,4} 24 (4,7)
Full image sqc10864 Fddd 70 orthorhombic {4,4,4,4} 24 (4,7)
Full image sqc10865 Fddd 70 orthorhombic {4,4,4,4} 24 (4,7)
Full image sqc10872 Fddd 70 orthorhombic {5,7} 16 (2,7)
Full image sqc10874 Fddd 70 orthorhombic {5,7} 16 (2,7)
Full image sqc10875 Fddd 70 orthorhombic {5,7} 16 (2,7)
Full image sqc10880 Fddd 70 orthorhombic {4,8,4,4} 20 (4,7)
Full image sqc10881 Fddd 70 orthorhombic {4,8,4,4} 20 (4,7)
Full image sqc10884 Fddd 70 orthorhombic {6,3,3} 24 (3,7)
Full image sqc10886 Fddd 70 orthorhombic {6,3,3} 24 (3,7)
Full image sqc10901 Fddd 70 orthorhombic {8,4,4} 20 (3,7)
Full image sqc10918 Fddd 70 orthorhombic {4,4,8,4} 20 (4,7)
Full image sqc10922 Fddd 70 orthorhombic {4,8,4,4} 20 (4,7)
Full image sqc10924 Fddd 70 orthorhombic {4,8,4,4} 20 (4,7)
Full image sqc10971 Fddd 70 orthorhombic {4,8,4,4} 20 (4,7)
Full image sqc10985 Fddd 70 orthorhombic {4,8,4,4} 20 (4,7)
Full image sqc11068 Fddd 70 orthorhombic {3,6,4,4,4} 24 (5,6)
Full image sqc11075 Fddd 70 orthorhombic {3,6,4,4,4} 24 (5,6)
Full image sqc11076 Fddd 70 orthorhombic {3,6,4,4,4} 24 (5,6)
Full image sqc11077 Fddd 70 orthorhombic {3,6,4,4,4} 24 (5,6)
Full image sqc11078 Fddd 70 orthorhombic {3,6,4,4,4} 24 (5,6)
Full image sqc11101 Fddd 70 orthorhombic {4,5,5} 20 (3,6)
Full image sqc11102 Fddd 70 orthorhombic {4,5,5} 20 (3,6)
Full image sqc11103 Fddd 70 orthorhombic {4,5,5} 20 (3,6)
Full image sqc11105 Fddd 70 orthorhombic {4,5,5} 20 (3,6)
Full image sqc11106 Fddd 70 orthorhombic {4,5,5} 20 (3,6)
Full image sqc11131 Fddd 70 orthorhombic {4,4,4,4} 24 (4,7)
Full image sqc11132 Fddd 70 orthorhombic {4,4,4,4} 24 (4,7)
Full image sqc11172 Fddd 70 orthorhombic {4,3,3,4,4} 28 (5,7)
Full image sqc11173 Fddd 70 orthorhombic {4,3,3,4,4} 28 (5,7)
Full image sqc11186 Fddd 70 orthorhombic {4,4,4,4} 24 (4,7)
Full image sqc11190 Fddd 70 orthorhombic {4,4,4} 24 (3,7)
Full image sqc11193 Fddd 70 orthorhombic {4,4,4} 24 (3,7)
Full image sqc11194 Fddd 70 orthorhombic {4,4,4} 24 (3,7)
Full image sqc11195 Fddd 70 orthorhombic {4,4,4} 24 (3,7)
Full image sqc11209 Fddd 70 orthorhombic {4,4,4,4} 24 (4,7)
Full image sqc11211 Fddd 70 orthorhombic {4,4,4} 24 (3,7)
Full image sqc11307 Fddd 70 orthorhombic {10,4,4} 20 (3,7)
Full image sqc11308 Fddd 70 orthorhombic {10,4,4} 20 (3,7)
Full image sqc11309 Fddd 70 orthorhombic {10,4,4} 20 (3,7)
Full image sqc11311 Fddd 70 orthorhombic {10,4,4} 20 (3,7)
Full image sqc11324 Fddd 70 orthorhombic {10,4,4} 20 (3,7)
Full image sqc11339 Fddd 70 orthorhombic {7,3,3} 24 (3,7)
Full image sqc11340 Fddd 70 orthorhombic {7,3,3} 24 (3,7)
Full image sqc11341 Fddd 70 orthorhombic {8,3,4,4,4} 24 (5,7)
Full image sqc11350 Fddd 70 orthorhombic {6,5,5} 20 (3,7)
Full image sqc11351 Fddd 70 orthorhombic {6,5,5} 20 (3,7)
Full image sqc11352 Fddd 70 orthorhombic {6,5,5} 20 (3,7)
Full image sqc11372 Fddd 70 orthorhombic {5,4,4} 24 (3,7)
Full image sqc11373 Fddd 70 orthorhombic {5,4,4} 24 (3,7)
Full image sqc11376 Fddd 70 orthorhombic {5,4,4} 24 (3,7)
Full image sqc11379 Fddd 70 orthorhombic {5,4,4} 24 (3,7)
Full image sqc11380 Fddd 70 orthorhombic {5,4,4} 24 (3,7)
Full image sqc11382 Fddd 70 orthorhombic {5,4,4} 24 (3,7)
Full image sqc11384 Fddd 70 orthorhombic {5,4,4} 24 (3,7)
Full image sqc11385 Fddd 70 orthorhombic {5,4,4} 24 (3,7)
Full image sqc11389 Fddd 70 orthorhombic {4,8,3,4,4} 24 (5,7)
Full image sqc11392 Fddd 70 orthorhombic {4,4,4,6,4} 24 (5,7)
Full image sqc11403 Fddd 70 orthorhombic {4,8,3,4,4} 24 (5,7)
Full image sqc11404 Fddd 70 orthorhombic {4,8,3,4,4} 24 (5,7)
Full image sqc11407 Fddd 70 orthorhombic {4,4,4,6,4} 24 (5,7)
Full image sqc11408 Fddd 70 orthorhombic {4,4,4,6,4} 24 (5,7)
Full image sqc11409 Fddd 70 orthorhombic {4,4,6,4,4} 24 (5,7)
Full image sqc11412 Fddd 70 orthorhombic {4,4,6,4,4} 24 (5,7)
Full image sqc11420 Fddd 70 orthorhombic {4,4,6,4,4} 24 (5,7)
Full image sqc11424 Fddd 70 orthorhombic {4,4,3,4,4} 28 (5,7)
Full image sqc11427 Fddd 70 orthorhombic {4,4,3,4,4} 28 (5,7)
Full image sqc11430 Fddd 70 orthorhombic {4,4,3,4,4} 28 (5,7)
Full image sqc11431 Fddd 70 orthorhombic {7,3,3} 24 (3,7)
Full image sqc11433 Fddd 70 orthorhombic {7,3,3} 24 (3,7)
Full image sqc11434 Fddd 70 orthorhombic {7,3,3} 24 (3,7)
Full image sqc11435 Fddd 70 orthorhombic {8,3,4,4,4} 24 (5,7)
Full image sqc11436 Fddd 70 orthorhombic {8,3,4,4,4} 24 (5,7)
Full image sqc11443 Fddd 70 orthorhombic {5,4,4} 24 (3,7)
Full image sqc11444 Fddd 70 orthorhombic {5,4,4} 24 (3,7)
Full image sqc11452 Fddd 70 orthorhombic {6,5,5} 20 (3,7)
Full image sqc11453 Fddd 70 orthorhombic {6,5,5} 20 (3,7)
Full image sqc11454 Fddd 70 orthorhombic {8,3,4,4,4} 24 (5,7)
Full image sqc11455 Fddd 70 orthorhombic {8,3,4,4,4} 24 (5,7)