Fddd

Number70
Symmetry Classorthorhombic
ChiralN

s-nets

816 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc10268 Fddd 70 orthorhombic {8,3,4,4} 20 (4,6)
Full image sqc10272 Fddd 70 orthorhombic {8,3,4,4} 20 (4,6)
Full image sqc10273 Fddd 70 orthorhombic {8,3,4,4} 20 (4,6)
Full image sqc10280 Fddd 70 orthorhombic {5,6} 16 (2,7)
Full image sqc10281 Fddd 70 orthorhombic {5,6} 16 (2,7)
Full image sqc10283 Fddd 70 orthorhombic {5,6} 16 (2,7)
Full image sqc10286 Fddd 70 orthorhombic {6,5} 16 (2,7)
Full image sqc10290 Fddd 70 orthorhombic {6,4,4} 20 (3,6)
Full image sqc10292 Fddd 70 orthorhombic {6,4,4} 20 (3,6)
Full image sqc10294 Fddd 70 orthorhombic {6,5} 16 (2,7)
Full image sqc10295 Fddd 70 orthorhombic {6,5} 16 (2,7)
Full image sqc10296 Fddd 70 orthorhombic {6,4,4} 20 (3,6)
Full image sqc10298 Fddd 70 orthorhombic {6,4,4} 20 (3,6)
Full image sqc10304 Fddd 70 orthorhombic {6,5} 16 (2,7)
Full image sqc10305 Fddd 70 orthorhombic {6,5} 16 (2,7)
Full image sqc10310 Fddd 70 orthorhombic {5,3,3} 24 (3,6)
Full image sqc10311 Fddd 70 orthorhombic {5,3,3} 24 (3,6)
Full image sqc10315 Fddd 70 orthorhombic {5,3,3} 24 (3,6)
Full image sqc10316 Fddd 70 orthorhombic {5,3,3} 24 (3,6)
Full image sqc10324 Fddd 70 orthorhombic {4,8,6,4} 16 (4,6)
Full image sqc10327 Fddd 70 orthorhombic {4,4,4,3} 24 (4,7)
Full image sqc10329 Fddd 70 orthorhombic {3,4,4,4} 24 (4,7)
Full image sqc10331 Fddd 70 orthorhombic {4,3,4,4} 24 (4,7)
Full image sqc10349 Fddd 70 orthorhombic {4,4,3,4} 24 (4,7)
Full image sqc10351 Fddd 70 orthorhombic {4,3,4,4} 24 (4,7)
Full image sqc10353 Fddd 70 orthorhombic {4,8,6,4} 16 (4,6)
Full image sqc10360 Fddd 70 orthorhombic {4,8,6,4} 16 (4,6)
Full image sqc10364 Fddd 70 orthorhombic {4,4,4,3} 24 (4,7)
Full image sqc10365 Fddd 70 orthorhombic {3,4,4,4} 24 (4,7)
Full image sqc10366 Fddd 70 orthorhombic {4,3,4,4} 24 (4,7)
Full image sqc10367 Fddd 70 orthorhombic {4,4,4,3} 24 (4,7)
Full image sqc10368 Fddd 70 orthorhombic {4,3,4,4} 24 (4,7)
Full image sqc10369 Fddd 70 orthorhombic {3,4,4,4} 24 (4,7)
Full image sqc10370 Fddd 70 orthorhombic {3,4,4,4} 24 (4,7)
Full image sqc10371 Fddd 70 orthorhombic {3,4,4,4} 24 (4,7)
Full image sqc10372 Fddd 70 orthorhombic {4,4,3,4} 24 (4,7)
Full image sqc10378 Fddd 70 orthorhombic {4,4,3,4} 24 (4,7)
Full image sqc10379 Fddd 70 orthorhombic {3,4,4,4} 24 (4,7)
Full image sqc10380 Fddd 70 orthorhombic {4,4,6,4} 20 (4,6)
Full image sqc10381 Fddd 70 orthorhombic {4,4,6,4} 20 (4,6)
Full image sqc10382 Fddd 70 orthorhombic {4,4,6,4} 20 (4,6)
Full image sqc10390 Fddd 70 orthorhombic {3,4,4,4} 24 (4,7)
Full image sqc10392 Fddd 70 orthorhombic {4,3,4,4} 24 (4,7)
Full image sqc10393 Fddd 70 orthorhombic {4,3,4,4} 24 (4,7)
Full image sqc10394 Fddd 70 orthorhombic {3,4,4,4} 24 (4,7)
Full image sqc10397 Fddd 70 orthorhombic {4,3,4,4} 24 (4,7)
Full image sqc10398 Fddd 70 orthorhombic {4,4,3,4} 24 (4,7)
Full image sqc10403 Fddd 70 orthorhombic {7,4} 16 (2,7)
Full image sqc10405 Fddd 70 orthorhombic {8,6,4,4} 16 (4,6)
Full image sqc10407 Fddd 70 orthorhombic {3,8} 16 (2,7)
Full image sqc10408 Fddd 70 orthorhombic {3,8} 16 (2,7)
Full image sqc10409 Fddd 70 orthorhombic {8,3} 16 (2,7)
Full image sqc10410 Fddd 70 orthorhombic {3,8} 16 (2,7)
Full image sqc10411 Fddd 70 orthorhombic {3,8} 16 (2,7)
Full image sqc10412 Fddd 70 orthorhombic {3,8} 16 (2,7)
Full image sqc10414 Fddd 70 orthorhombic {7,4} 16 (2,7)
Full image sqc10415 Fddd 70 orthorhombic {7,4} 16 (2,7)
Full image sqc10417 Fddd 70 orthorhombic {8,6,4,4} 16 (4,6)
Full image sqc10418 Fddd 70 orthorhombic {8,6,4,4} 16 (4,6)
Full image sqc10419 Fddd 70 orthorhombic {8,6,4,4} 16 (4,6)
Full image sqc10421 Fddd 70 orthorhombic {5,6} 16 (2,7)
Full image sqc10422 Fddd 70 orthorhombic {5,6} 16 (2,7)
Full image sqc10427 Fddd 70 orthorhombic {6,4,4} 20 (3,6)
Full image sqc10428 Fddd 70 orthorhombic {6,4,4} 20 (3,6)
Full image sqc10432 Fddd 70 orthorhombic {5,3,3} 24 (3,6)
Full image sqc10444 Fddd 70 orthorhombic {6,4,4} 20 (3,6)
Full image sqc10448 Fddd 70 orthorhombic {6,4,4} 20 (3,6)
Full image sqc10449 Fddd 70 orthorhombic {6,4,4} 20 (3,6)
Full image sqc10450 Fddd 70 orthorhombic {6,4,4} 20 (3,6)
Full image sqc10456 Fddd 70 orthorhombic {8,6,4,4} 16 (4,6)
Full image sqc10460 Fddd 70 orthorhombic {8,3,4,4} 20 (4,6)
Full image sqc10461 Fddd 70 orthorhombic {8,3,4,4} 20 (4,6)
Full image sqc10489 Fddd 70 orthorhombic {4,8,6,4} 16 (4,6)
Full image sqc10490 Fddd 70 orthorhombic {4,8,6,4} 16 (4,6)
Full image sqc10516 Fddd 70 orthorhombic {4,4,6,4} 20 (4,6)
Full image sqc10518 Fddd 70 orthorhombic {4,4,6,4} 20 (4,6)
Full image sqc10540 Fddd 70 orthorhombic {4,6,4,4} 20 (4,6)
Full image sqc10542 Fddd 70 orthorhombic {4,6,4,4} 20 (4,6)
Full image sqc10544 Fddd 70 orthorhombic {4,6,4,4} 20 (4,6)
Full image sqc10545 Fddd 70 orthorhombic {4,6,4,4} 20 (4,6)
Full image sqc10546 Fddd 70 orthorhombic {4,6,4,4} 20 (4,6)
Full image sqc10584 Fddd 70 orthorhombic {4,3,4,4} 24 (4,7)
Full image sqc10585 Fddd 70 orthorhombic {4,3,4,4} 24 (4,7)
Full image sqc10596 Fddd 70 orthorhombic {3,4,4,4} 24 (4,7)
Full image sqc10622 Fddd 70 orthorhombic {3,4,4,4} 24 (4,7)
Full image sqc10623 Fddd 70 orthorhombic {4,4,4,3} 24 (4,7)
Full image sqc10624 Fddd 70 orthorhombic {4,4,4,3} 24 (4,7)
Full image sqc10625 Fddd 70 orthorhombic {4,3,4,4} 24 (4,7)
Full image sqc10626 Fddd 70 orthorhombic {4,4,3,4} 24 (4,7)
Full image sqc10650 Fddd 70 orthorhombic {3,4,4} 24 (3,6)
Full image sqc10656 Fddd 70 orthorhombic {3,4,4} 24 (3,6)
Full image sqc10657 Fddd 70 orthorhombic {3,4,4} 24 (3,6)
Full image sqc10658 Fddd 70 orthorhombic {3,4,4} 24 (3,6)
Full image sqc10659 Fddd 70 orthorhombic {3,4,4} 24 (3,6)
Full image sqc10712 Fddd 70 orthorhombic {12,3,3} 20 (3,7)
Full image sqc10713 Fddd 70 orthorhombic {12,3,3} 20 (3,7)
Full image sqc10715 Fddd 70 orthorhombic {12,3,3} 20 (3,7)
Full image sqc10736 Fddd 70 orthorhombic {12,3,3} 20 (3,7)
Full image sqc10737 Fddd 70 orthorhombic {12,3,3} 20 (3,7)
Full image sqc10781 Fddd 70 orthorhombic {8,4,4} 20 (3,7)