Fddd

Number70
Symmetry Classorthorhombic
ChiralN

s-nets

816 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc7809 Fddd 70 orthorhombic {4,3,3} 20 (3,5)
Full image sqc7812 Fddd 70 orthorhombic {4,6} 12 (2,5)
Full image sqc7817 Fddd 70 orthorhombic {4,8} 12 (2,6)
Full image sqc7822 Fddd 70 orthorhombic {8,4,4} 12 (3,5)
Full image sqc7823 Fddd 70 orthorhombic {8,4,4} 12 (3,5)
Full image sqc7825 Fddd 70 orthorhombic {6,4} 12 (2,5)
Full image sqc7826 Fddd 70 orthorhombic {6,4} 12 (2,5)
Full image sqc7827 Fddd 70 orthorhombic {6,4} 12 (2,5)
Full image sqc7828 Fddd 70 orthorhombic {6,5} 12 (2,5)
Full image sqc7830 Fddd 70 orthorhombic {6,4} 12 (2,5)
Full image sqc7833 Fddd 70 orthorhombic {6,5} 12 (2,5)
Full image sqc7836 Fddd 70 orthorhombic {6,3,4} 16 (3,5)
Full image sqc7837 Fddd 70 orthorhombic {6,3,4} 16 (3,5)
Full image sqc7839 Fddd 70 orthorhombic {6,5} 12 (2,5)
Full image sqc7842 Fddd 70 orthorhombic {6,5} 12 (2,5)
Full image sqc7847 Fddd 70 orthorhombic {3,5} 16 (2,5)
Full image sqc7848 Fddd 70 orthorhombic {3,5} 16 (2,5)
Full image sqc7853 Fddd 70 orthorhombic {3,3,4} 20 (3,5)
Full image sqc7854 Fddd 70 orthorhombic {4,3,3} 20 (3,5)
Full image sqc7865 Fddd 70 orthorhombic {4,8} 12 (2,6)
Full image sqc7874 Fddd 70 orthorhombic {6,5} 12 (2,5)
Full image sqc7884 Fddd 70 orthorhombic {6,6,4} 12 (3,5)
Full image sqc7885 Fddd 70 orthorhombic {6,6,4} 12 (3,5)
Full image sqc7887 Fddd 70 orthorhombic {6,3,4} 16 (3,5)
Full image sqc7890 Fddd 70 orthorhombic {6,3,4} 16 (3,5)
Full image sqc7892 Fddd 70 orthorhombic {6,3,4} 16 (3,5)
Full image sqc7897 Fddd 70 orthorhombic {4,3,6} 16 (3,5)
Full image sqc7898 Fddd 70 orthorhombic {6,3,4} 16 (3,5)
Full image sqc7968 Fddd 70 orthorhombic {4,6,3} 16 (3,5)
Full image sqc7969 Fddd 70 orthorhombic {4,6,3} 16 (3,5)
Full image sqc7970 Fddd 70 orthorhombic {3,6,4} 16 (3,5)
Full image sqc7971 Fddd 70 orthorhombic {3,6,4} 16 (3,5)
Full image sqc8047 Fddd 70 orthorhombic {4,4,4} 16 (3,5)
Full image sqc8049 Fddd 70 orthorhombic {4,4,4} 16 (3,5)
Full image sqc8087 Fddd 70 orthorhombic {4,4,4} 16 (3,5)
Full image sqc8093 Fddd 70 orthorhombic {4,4,4} 16 (3,5)
Full image sqc8100 Fddd 70 orthorhombic {4,4} 16 (2,6)
Full image sqc8110 Fddd 70 orthorhombic {4,4} 16 (2,6)
Full image sqc8474 Fddd 70 orthorhombic {12,3} 12 (2,6)
Full image sqc8475 Fddd 70 orthorhombic {12,3} 12 (2,6)
Full image sqc8476 Fddd 70 orthorhombic {3,12} 12 (2,6)
Full image sqc8477 Fddd 70 orthorhombic {3,12} 12 (2,6)
Full image sqc8478 Fddd 70 orthorhombic {10,4} 12 (2,6)
Full image sqc8479 Fddd 70 orthorhombic {3,12} 12 (2,6)
Full image sqc8481 Fddd 70 orthorhombic {10,4} 12 (2,6)
Full image sqc8485 Fddd 70 orthorhombic {10,4} 12 (2,6)
Full image sqc8499 Fddd 70 orthorhombic {5,8} 12 (2,6)
Full image sqc8500 Fddd 70 orthorhombic {8,3,4} 16 (3,6)
Full image sqc8523 Fddd 70 orthorhombic {12,3} 12 (2,6)
Full image sqc8526 Fddd 70 orthorhombic {3,12} 12 (2,6)
Full image sqc8527 Fddd 70 orthorhombic {12,3} 12 (2,6)
Full image sqc8541 Fddd 70 orthorhombic {10,4} 12 (2,6)
Full image sqc8542 Fddd 70 orthorhombic {3,12} 12 (2,6)
Full image sqc8567 Fddd 70 orthorhombic {12,3} 12 (2,6)
Full image sqc8583 Fddd 70 orthorhombic {10,4} 12 (2,6)
Full image sqc8631 Fddd 70 orthorhombic {8,3,4} 16 (3,6)
Full image sqc8632 Fddd 70 orthorhombic {5,8} 12 (2,6)
Full image sqc8633 Fddd 70 orthorhombic {5,8} 12 (2,6)
Full image sqc8634 Fddd 70 orthorhombic {7,4} 12 (2,5)
Full image sqc8635 Fddd 70 orthorhombic {7,4} 12 (2,5)
Full image sqc8640 Fddd 70 orthorhombic {7,4} 12 (2,5)
Full image sqc8644 Fddd 70 orthorhombic {8,6,4} 12 (3,5)
Full image sqc8648 Fddd 70 orthorhombic {8,6,4} 12 (3,5)
Full image sqc8649 Fddd 70 orthorhombic {8,6,4} 12 (3,5)
Full image sqc8657 Fddd 70 orthorhombic {6,6} 12 (2,6)
Full image sqc8659 Fddd 70 orthorhombic {3,6} 16 (2,6)
Full image sqc8660 Fddd 70 orthorhombic {3,6} 16 (2,6)
Full image sqc8661 Fddd 70 orthorhombic {6,6} 12 (2,6)
Full image sqc8665 Fddd 70 orthorhombic {3,6} 16 (2,6)
Full image sqc8669 Fddd 70 orthorhombic {6,4,4} 16 (3,6)
Full image sqc8670 Fddd 70 orthorhombic {6,6} 12 (2,6)
Full image sqc8676 Fddd 70 orthorhombic {6,6} 12 (2,6)
Full image sqc8677 Fddd 70 orthorhombic {6,3} 16 (2,6)
Full image sqc8678 Fddd 70 orthorhombic {3,6} 16 (2,6)
Full image sqc8681 Fddd 70 orthorhombic {6,3} 16 (2,6)
Full image sqc8683 Fddd 70 orthorhombic {6,4,4} 16 (3,6)
Full image sqc8684 Fddd 70 orthorhombic {6,4,4} 16 (3,6)
Full image sqc8685 Fddd 70 orthorhombic {6,3} 16 (2,6)
Full image sqc8689 Fddd 70 orthorhombic {6,6} 12 (2,6)
Full image sqc8691 Fddd 70 orthorhombic {6,6} 12 (2,6)
Full image sqc8693 Fddd 70 orthorhombic {6,6} 12 (2,6)
Full image sqc8694 Fddd 70 orthorhombic {6,6} 12 (2,6)
Full image sqc8697 Fddd 70 orthorhombic {6,3} 16 (2,6)
Full image sqc8700 Fddd 70 orthorhombic {6,3} 16 (2,6)
Full image sqc8703 Fddd 70 orthorhombic {3,6} 16 (2,6)
Full image sqc8706 Fddd 70 orthorhombic {6,3} 16 (2,6)
Full image sqc8707 Fddd 70 orthorhombic {3,6} 16 (2,6)
Full image sqc8708 Fddd 70 orthorhombic {6,3,3} 20 (3,5)
Full image sqc8711 Fddd 70 orthorhombic {6,3} 16 (2,6)
Full image sqc8712 Fddd 70 orthorhombic {6,3} 16 (2,6)
Full image sqc8715 Fddd 70 orthorhombic {3,6} 16 (2,6)
Full image sqc8716 Fddd 70 orthorhombic {6,3,3} 20 (3,5)
Full image sqc8717 Fddd 70 orthorhombic {6,3,3} 20 (3,5)
Full image sqc8726 Fddd 70 orthorhombic {5,8} 12 (2,6)
Full image sqc8727 Fddd 70 orthorhombic {5,8} 12 (2,6)
Full image sqc8729 Fddd 70 orthorhombic {5,4} 16 (2,6)
Full image sqc8730 Fddd 70 orthorhombic {5,4} 16 (2,6)
Full image sqc8733 Fddd 70 orthorhombic {5,4} 16 (2,6)
Full image sqc8735 Fddd 70 orthorhombic {5,4} 16 (2,6)
Full image sqc8737 Fddd 70 orthorhombic {5,4} 16 (2,6)