h-net: hqc2398


Topological data

Orbifold symbol*22222
Transitivity (vertex, edge, ring)(2,7,6)
Vertex degrees{4,7}
2D vertex symbol {4.4.3.4}{3.4.4.4.4.4.4}
Delaney-Dress Symbol <2398.2:15:1 2 3 4 5 7 9 10 11 12 13 14 15,2 4 6 7 10 11 13 15,3 10 5 8 9 12 14 15:4 4 3 4 4 4,4 7>
Dual net hqc2408

Derived s-nets

s-nets with faithful topology

22 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc7092 Fmmm 69 orthorhombic {4,7} 12 (2,7)
Full image sqc12060 P4/mmm 123 tetragonal {7,4} 24 (2,7)
Full image sqc12047 I4122 98 tetragonal {7,4,4} 24 (3,8)
Full image sqc12048 I4122 98 tetragonal {7,4,4} 24 (3,8)
Full image sqc12056 I4122 98 tetragonal {7,4,4} 24 (3,8)
Full image sqc12058 Fddd 70 orthorhombic {7,4,4} 24 (3,8)
Full image sqc12059 I4122 98 tetragonal {7,4,4} 24 (3,8)
Full image sqc12062 Fddd 70 orthorhombic {7,4,4} 24 (3,8)
Full image sqc12063 Fddd 70 orthorhombic {7,4,4} 24 (3,8)
Full image sqc12064 I4122 98 tetragonal {7,4,4} 24 (3,8)
Full image sqc12103 Fddd 70 orthorhombic {7,4,4} 24 (3,8)
Full image sqc12104 Fddd 70 orthorhombic {7,4,4} 24 (3,8)
Full image sqc1471 Pmmm 47 orthorhombic {7,4} 6 (2,7)
Full image sqc1479 Pmmm 47 orthorhombic {7,4} 6 (2,7)
Full image sqc1484 Pmmm 47 orthorhombic {4,7} 6 (2,7)
Full image sqc7013 P4222 93 tetragonal {7,4} 12 (2,7)
Full image sqc7025 P4222 93 tetragonal {4,7} 12 (2,7)
Full image sqc7087 P4222 93 tetragonal {4,7} 12 (2,7)
Full image sqc7093 Cmma 67 orthorhombic {4,7} 12 (2,7)
Full image sqc7096 Cmma 67 orthorhombic {4,7} 12 (2,7)
Full image sqc7197 P4222 93 tetragonal {4,7} 12 (2,7)
Full image sqc7200 P4222 93 tetragonal {7,4} 12 (2,7)

s-nets with edge collapse


Derived U-tilings

10 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC3149 *22222a (2,7,6) {7,4} {4.4.3.4}{3.4.4.4.4.4.4} No s‑net Snet sqc12048 Snet sqc7025
Tiling details UQC3150 *22222a (2,7,6) {7,4} {4.4.3.4}{3.4.4.4.4.4.4} Snet sqc6310 Snet sqc12047 Snet sqc7013
Tiling details UQC3151 *22222b (2,7,6) {7,4} {4.4.3.4}{3.4.4.4.4.4.4} Snet sqc6438 Snet sqc12103 Snet sqc1484
Tiling details UQC3152 *22222a (2,7,6) {7,4} {4.4.3.4}{3.4.4.4.4.4.4} No s‑net Snet sqc12056 Snet sqc7197
Tiling details UQC3153 *22222b (2,7,6) {7,4} {4.4.3.4}{3.4.4.4.4.4.4} Snet sqc7092 Snet sqc12104 Snet sqc1471
Tiling details UQC3154 *22222b (2,7,6) {7,4} {4.4.3.4}{3.4.4.4.4.4.4} Snet sqc1471 Snet sqc12062 Snet sqc7093
Tiling details UQC3155 *22222b (2,7,6) {7,4} {4.4.3.4}{3.4.4.4.4.4.4} No s‑net Snet sqc12063 Snet sqc1479
Tiling details UQC3156 *22222b (2,7,6) {7,4} {4.4.3.4}{3.4.4.4.4.4.4} Snet sqc1471 Snet sqc12058 Snet sqc7096
Tiling details UQC3157 *22222a (2,7,6) {7,4} {4.4.3.4}{3.4.4.4.4.4.4} Snet sqc11921 Snet sqc12064 Snet sqc7087
Tiling details UQC3158 *22222a (2,7,6) {7,4} {4.4.3.4}{3.4.4.4.4.4.4} Snet sqc12060 Snet sqc12059 Snet sqc7200

Symmetry-lowered hyperbolic tilings