Orbifold symbol | *22222 |
Transitivity (vertex, edge, ring) | (2,7,6) |
Vertex degrees | {4,7} |
2D vertex symbol | {4.4.3.4}{3.4.4.4.4.4.4} |
Delaney-Dress Symbol | <2398.2:15:1 2 3 4 5 7 9 10 11 12 13 14 15,2 4 6 7 10 11 13 15,3 10 5 8 9 12 14 15:4 4 3 4 4 4,4 7> |
Dual net | hqc2408 |
Image | s-net name | Other names | Space group | Space group number | Symmetry class | Vertex degree(s) | Vertices per primitive unit cell | Transitivity (Vertex, Edge) |
---|---|---|---|---|---|---|---|---|
sqc7092 | Fmmm | 69 | orthorhombic | {4,7} | 12 | (2,7) | ||
sqc12060 | P4/mmm | 123 | tetragonal | {7,4} | 24 | (2,7) | ||
sqc12047 | I4122 | 98 | tetragonal | {7,4,4} | 24 | (3,8) | ||
sqc12048 | I4122 | 98 | tetragonal | {7,4,4} | 24 | (3,8) | ||
sqc12056 | I4122 | 98 | tetragonal | {7,4,4} | 24 | (3,8) | ||
sqc12058 | Fddd | 70 | orthorhombic | {7,4,4} | 24 | (3,8) | ||
sqc12059 | I4122 | 98 | tetragonal | {7,4,4} | 24 | (3,8) | ||
sqc12062 | Fddd | 70 | orthorhombic | {7,4,4} | 24 | (3,8) | ||
sqc12063 | Fddd | 70 | orthorhombic | {7,4,4} | 24 | (3,8) | ||
sqc12064 | I4122 | 98 | tetragonal | {7,4,4} | 24 | (3,8) | ||
sqc12103 | Fddd | 70 | orthorhombic | {7,4,4} | 24 | (3,8) | ||
sqc12104 | Fddd | 70 | orthorhombic | {7,4,4} | 24 | (3,8) | ||
sqc1471 | Pmmm | 47 | orthorhombic | {7,4} | 6 | (2,7) | ||
sqc1479 | Pmmm | 47 | orthorhombic | {7,4} | 6 | (2,7) | ||
sqc1484 | Pmmm | 47 | orthorhombic | {4,7} | 6 | (2,7) | ||
sqc7013 | P4222 | 93 | tetragonal | {7,4} | 12 | (2,7) | ||
sqc7025 | P4222 | 93 | tetragonal | {4,7} | 12 | (2,7) | ||
sqc7087 | P4222 | 93 | tetragonal | {4,7} | 12 | (2,7) | ||
sqc7093 | Cmma | 67 | orthorhombic | {4,7} | 12 | (2,7) | ||
sqc7096 | Cmma | 67 | orthorhombic | {4,7} | 12 | (2,7) | ||
sqc7197 | P4222 | 93 | tetragonal | {4,7} | 12 | (2,7) | ||
sqc7200 | P4222 | 93 | tetragonal | {7,4} | 12 | (2,7) |
Image | U-tiling name | PGD Subgroup | Transitivity (Vert,Edge,Face) | Vertex Degree | Vertex Symbol | P net | G net | D net |
---|---|---|---|---|---|---|---|---|
UQC3149 | *22222a | (2,7,6) | {7,4} | {4.4.3.4}{3.4.4.4.4.4.4} | No s‑net | sqc12048 | sqc7025 | |
UQC3150 | *22222a | (2,7,6) | {7,4} | {4.4.3.4}{3.4.4.4.4.4.4} | sqc6310 | sqc12047 | sqc7013 | |
UQC3151 | *22222b | (2,7,6) | {7,4} | {4.4.3.4}{3.4.4.4.4.4.4} | sqc6438 | sqc12103 | sqc1484 | |
UQC3152 | *22222a | (2,7,6) | {7,4} | {4.4.3.4}{3.4.4.4.4.4.4} | No s‑net | sqc12056 | sqc7197 | |
UQC3153 | *22222b | (2,7,6) | {7,4} | {4.4.3.4}{3.4.4.4.4.4.4} | sqc7092 | sqc12104 | sqc1471 | |
UQC3154 | *22222b | (2,7,6) | {7,4} | {4.4.3.4}{3.4.4.4.4.4.4} | sqc1471 | sqc12062 | sqc7093 | |
UQC3155 | *22222b | (2,7,6) | {7,4} | {4.4.3.4}{3.4.4.4.4.4.4} | No s‑net | sqc12063 | sqc1479 | |
UQC3156 | *22222b | (2,7,6) | {7,4} | {4.4.3.4}{3.4.4.4.4.4.4} | sqc1471 | sqc12058 | sqc7096 | |
UQC3157 | *22222a | (2,7,6) | {7,4} | {4.4.3.4}{3.4.4.4.4.4.4} | sqc11921 | sqc12064 | sqc7087 | |
UQC3158 | *22222a | (2,7,6) | {7,4} | {4.4.3.4}{3.4.4.4.4.4.4} | sqc12060 | sqc12059 | sqc7200 |